File size: 11,007 Bytes
ed7e222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bdc439
ed7e222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe26361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed7e222
 
 
 
 
 
 
fe26361
ed7e222
 
 
fe26361
ed7e222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594f1f8
0a6b286
ed7e222
 
 
 
 
 
 
 
 
 
dce5201
ed7e222
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
Input UI for RoseTTAfold All Atom 

using two custom gradio components: gradio_molecule3d and gradio_cofoldinginput
"""


import gradio as gr
from gradio_cofoldinginput import CofoldingInput

from gradio_molecule3d import Molecule3D

import json
import yaml
from openbabel import openbabel

import zipfile
import tempfile 

import os

from Bio.PDB import PDBParser, PDBIO

baseconfig = """job_name: "structure_prediction"
output_path: ""
checkpoint_path: RFAA_paper_weights.pt
database_params:
  sequencedb: ""
  hhdb: "pdb100_2021Mar03/pdb100_2021Mar03"
  command: make_msa.sh
  num_cpus: 4
  mem: 64
protein_inputs: null
na_inputs: null
sm_inputs: null
covale_inputs:  null
residue_replacement: null

chem_params:
  use_phospate_frames_for_NA: True
  use_cif_ordering_for_trp: True

loader_params:
  n_templ: 4
  MAXLAT: 128
  MAXSEQ: 1024
  MAXCYCLE: 4
  BLACK_HOLE_INIT: False
  seqid: 150.0


legacy_model_param:
  n_extra_block: 4
  n_main_block: 32
  n_ref_block: 4
  n_finetune_block: 0
  d_msa: 256
  d_msa_full: 64
  d_pair: 192
  d_templ: 64
  n_head_msa: 8
  n_head_pair: 6
  n_head_templ: 4
  d_hidden_templ: 64
  p_drop: 0.0
  use_chiral_l1: True
  use_lj_l1: True
  use_atom_frames: True
  recycling_type: "all"
  use_same_chain: True
  lj_lin: 0.75
  SE3_param: 
    num_layers: 1
    num_channels: 32
    num_degrees: 2
    l0_in_features: 64
    l0_out_features: 64
    l1_in_features: 3
    l1_out_features: 2
    num_edge_features: 64
    n_heads: 4
    div: 4
  SE3_ref_param:
    num_layers: 2
    num_channels: 32
    num_degrees: 2
    l0_in_features: 64
    l0_out_features: 64
    l1_in_features: 3
    l1_out_features: 2
    num_edge_features: 64
    n_heads: 4
    div: 4
"""

def convert_format(input_file, jobname, chain, deleteIndexes, attachmentIndex):

    conv = openbabel.OBConversion()
    conv.SetInAndOutFormats('cdjson', 'sdf')

    # Add options
    conv.AddOption("c", openbabel.OBConversion.OUTOPTIONS, "1")
    with open(f"{jobname}_sm_{chain}.json", "w+") as fp:
        fp.write(input_file)
    mol = openbabel.OBMol()
    conv.ReadFile(mol, f"{jobname}_sm_{chain}.json") 
    
    deleted_count = 0
    # delete atoms in delete indexes
    for index in sorted(deleteIndexes, reverse=True):
        if index < attachmentIndex:
            deleted_count += 1
        atom = mol.GetAtom(index)
        mol.DeleteAtom(atom)
    
    attachmentIndex -= deleted_count

    conv.WriteFile(mol, f"{jobname}_sm_{chain}.sdf")
    return attachmentIndex


def prepare_input(input, jobname, baseconfig, hard_case):
    input_categories = {"protein":"protein_inputs", "DNA":"na_inputs","RNA":"na_inputs", "ligand":"sm_inputs"}

    # convert input to yaml format
    yaml_dict = {"defaults":["base"], "job_name":jobname, "output_path": jobname}
    list_of_input_files = []

    if len(input["chains"]) == 0:
        raise gr.Error("At least one chain must be provided")
    for chain in input["chains"]:
        if input_categories[chain["class"]] not in yaml_dict.keys():
            yaml_dict[input_categories[chain["class"]]] = {}

        if input_categories[chain["class"]] in ["protein_inputs", "na_inputs"]:
            #write fasta 
            with open(f"{jobname}_{chain['chain']}.fasta", "w+") as fp:
                fp.write(f">chain A\n{chain['sequence']}")
            if input_categories[chain["class"]] == "na_inputs":
                entry = {"input_type":chain["class"].lower(), "fasta":f"{jobname}/{jobname}_{chain['chain']}.fasta"}
            else:
                entry = {"fasta_file": f"{jobname}/{jobname}_{chain['chain']}.fasta"}
            list_of_input_files.append(f"{jobname}_{chain['chain']}.fasta")
            yaml_dict[input_categories[chain["class"]]][chain['chain']] =  entry
        
        if input_categories[chain['class']] == "sm_inputs":
            if "smiles" in chain.keys():
                entry = {"input_type": "smiles", "input": chain["smiles"]}
            elif "sdf" in chain.keys():
                # write to file 
                with open(f"{jobname}_sm_{chain['chain']}.sdf", "w+") as fp:
                    fp.write(chain["sdf"])
                list_of_input_files.append(f"{jobname}_sm_{chain['chain']}.sdf")
                entry = {"input_type": "sdf", "input": f"{jobname}/{jobname}_sm_{chain['chain']}.sdf"}
            elif "name" in chain.keys():
                list_of_input_files.append(f"metal_sdf/{chain['name']}_ideal.sdf")
                entry = {"input_type": "sdf", "input": f"{jobname}/{chain['name']}_ideal.sdf"}
            yaml_dict["sm_inputs"][chain['chain']] =  entry

    covale_inputs = []
    if len(input["covMods"])>0:
        yaml_dict["covale_inputs"]=""

    for covMod in input["covMods"]:
        new_attachment_index = covMod["attachmentIndex"]
        if len(covMod["deleteIndexes"])>0:
            new_attachment_index = convert_format(covMod["mol"],jobname, covMod["ligand"], covMod["deleteIndexes"], covMod["attachmentIndex"])
        chirality_ligand = "null"
        chirality_protein = "null"
        if covMod["protein_symmetry"] in ["CW", "CCW"]:
            chirality_protein = covMod["protein_symmetry"]
        if covMod["ligand_symmetry"] in ["CW", "CCW"]:
            chirality_ligand = covMod["ligand_symmetry"]
        covale_inputs.append(((covMod[ "protein"], covMod["residue"], covMod["atom"]), (covMod["ligand"], new_attachment_index), (chirality_protein, chirality_ligand)))
    if len(input["covMods"])>0:
        yaml_dict["covale_inputs"] = json.dumps(json.dumps(covale_inputs))[1:-1].replace("'", "\"")
    
    if hard_case:
        yaml_dict["loader_params"]= {}
        yaml_dict["loader_params"]["MAXCYCLE"] = 10
    # write yaml to tmp 
    with open(f"/tmp/{jobname}.yaml", "w+") as fp:
        # need to convert single quotes to double quotes
        fp.write(yaml.dump(yaml_dict).replace("'", "\""))
    
    # write baseconfig 
    with open(f"/tmp/base.yaml", "w+") as fp:
        fp.write(baseconfig)

    list_of_input_files.append(f"/tmp/{jobname}.yaml")
    list_of_input_files.append(f"/tmp/base.yaml")
    # convert dictionary to YAML
    with zipfile.ZipFile(os.path.join("/tmp/", f"{jobname}.zip"), 'w') as zip_archive:        
        for file in set(list_of_input_files):
            zip_archive.write(file, arcname= os.path.join(jobname,os.path.basename(file)),compress_type=zipfile.ZIP_DEFLATED)
    
    return yaml.dump(yaml_dict).replace("'", "\""),os.path.join("/tmp/", f"{jobname}.zip")


def convert_bfactors(pdb_path):
    with open(pdb_path, 'r') as f:
        lines = f.readlines()
    for i,line in enumerate(lines):
        # multiple each bfactor by 100
        if line[0:6] == 'ATOM  ' or line[0:6] == 'HETATM':
            bfactor = float(line[60:66])
            bfactor *= 100
            line = line[:60] + f'{bfactor:6.2f}' + line[66:]
            lines[i] = line
    with open(pdb_path.replace(".pdb", "_processed.pdb"), 'w') as f:
        f.write(''.join(lines))


def run_rf2aa(jobname, zip_archive):
    current_dir = os.getcwd()
    try:
        with zipfile.ZipFile(zip_archive, 'r') as zip_ref:
            zip_ref.extractall(os.path.join(current_dir))
        os.system(f"python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path {current_dir}/{jobname}")
        # scale pLDDT to 0-100 range in pdb output file
        convert_bfactors(f"{current_dir}/{jobname}/{jobname}.pdb")

    except Exception as e:
        raise gr.Error(f"Error running RFAA: {e}")
    return f"{current_dir}/{jobname}/{jobname}_processed.pdb"
    


def predict(input, jobname, dry_run, baseconfig, hard_case):
    yaml_input, zip_archive = prepare_input(input, jobname, baseconfig, hard_case)

    reps = []

    for chain in input["chains"]:
        if chain["class"] in ["protein", "RNA", "DNA"]:
            reps.append({
                "model": 0,
                "chain": chain["chain"],
                "resname": "",
                "style": "cartoon",
                "color": "alphafold",
                "residue_range": "",
                "around": 0,
                "byres": False
            })
        elif chain["class"] == "ligand" and "name" not in chain.keys():
            reps.append({
                "model": 0,
                "chain": chain["chain"],
                "resname": "LG1",
                "style": "stick",
                "color": "whiteCarbon",
                "residue_range": "",
                "around": 0,
                "byres": False
            })
        else:
            reps.append({
                "model": 0,
                "chain": chain["chain"],
                "resname": "LG1",
                "style": "sphere",
                "color": "whiteCarbon",
                "residue_range": "",
                "around": 0,
                "byres": False
            })
    if dry_run:
        return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True), gr.Markdown(f"""You can run your RFAA job using the following command: <pre>python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path absolute/path/to/unzipped/{jobname}</pre>""", visible=True), Molecule3D(visible=False)
    else:
        pdb_file = run_rf2aa(jobname, zip_archive)
        return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True),gr.Markdown(visible=False), Molecule3D(pdb_file,reps=reps,visible=True)

with gr.Blocks() as demo:
    gr.Markdown("# RoseTTAFold All Atom UI")
    gr.Markdown("""This UI allows you to generate input files for RoseTTAFold All Atom (RFAA) using the CofoldingInput widget. The input files can be used to run RFAA on your local machine. <br /> 
                If you launch the UI directly on your local machine you can also directly run the RFAA prediction. <br />
                More information in the official GitHub repository: [baker-laboratory/RoseTTAFold-All-Atom](https://github.com/baker-laboratory/RoseTTAFold-All-Atom)
                """)
    jobname = gr.Textbox("job1", label="Job Name")
    with gr.Tab("Input"):
        inp=CofoldingInput(label="Input")
        hard_case = gr.Checkbox(False, label="Hard case (increase MAXCYCLE to 10)")
        # only allow running the predictions if local 
        if os.environ.get("SPACE_HOST")!=None:
            dry_run = gr.Checkbox(True, label="Only generate input files (dry run)", interactive=False)
        else:
            dry_run = gr.Checkbox(True, label="Only generate input files (dry run)")
    with gr.Tab("Base config"):
        base_config = gr.Code(baseconfig, label="Base config")
    btn = gr.Button("Run")
    config_file = gr.Code(label="YAML Hydra config for RFAA", visible=True)
    runfiles = gr.File(label="files to run RFAA", visible=False)
    instructions = gr.Markdown(visible=False)

    out = Molecule3D(visible=False)

    btn.click(predict, inputs=[inp, jobname, dry_run, base_config, hard_case], outputs=[config_file, runfiles, instructions, out])

if __name__ == "__main__":
    demo.launch(share=True)