File size: 20,301 Bytes
0605e17
 
 
 
 
 
 
 
 
 
 
 
3817115
0605e17
 
 
 
 
 
 
 
 
 
 
 
 
3817115
0605e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59066a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
import os, time, sys


if not os.path.isfile("RF2_apr23.pt"):
    # send param download into background
    os.system(
        "(apt-get install aria2; aria2c -q -x 16 https://colabfold.steineggerlab.workers.dev/RF2_apr23.pt) &"
    )

if not os.path.isdir("RoseTTAFold2"):
    print("install RoseTTAFold2")
    os.system("git clone https://github.com/sokrypton/RoseTTAFold2.git")
    print(os.listdir("RoseTTAFold2"))
    os.system(
        "cd RoseTTAFold2/SE3Transformer; pip -q install --no-cache-dir -r requirements.txt; pip -q install ."
    )
    os.system(
        "wget https://raw.githubusercontent.com/sokrypton/ColabFold/beta/colabfold/mmseqs/api.py"
    )

    # install hhsuite
    print("install hhsuite")
    os.makedirs("hhsuite", exist_ok=True)
    os.system(
        f"curl -fsSL https://github.com/soedinglab/hh-suite/releases/download/v3.3.0/hhsuite-3.3.0-SSE2-Linux.tar.gz | tar xz -C hhsuite/"
    )
    print(os.listdir("hhsuite"))


if os.path.isfile(f"RF2_apr23.pt.aria2"):
    print("downloading RoseTTAFold2 params")
    while os.path.isfile(f"RF2_apr23.pt.aria2"):
        time.sleep(5)

os.environ["DGLBACKEND"] = "pytorch"
sys.path.append("RoseTTAFold2/network")
if "hhsuite" not in os.environ["PATH"]:
    os.environ["PATH"] += ":hhsuite/bin:hhsuite/scripts"

import matplotlib.pyplot as plt
import numpy as np
from parsers import parse_a3m
from api import run_mmseqs2
import torch
from string import ascii_uppercase, ascii_lowercase
import hashlib, re, os
import random

from Bio.PDB import *


def get_hash(x):
    return hashlib.sha1(x.encode()).hexdigest()


alphabet_list = list(ascii_uppercase + ascii_lowercase)
from collections import OrderedDict, Counter

import gradio as gr

if not "pred" in dir():
    from predict import Predictor

    print("compile RoseTTAFold2")
    model_params = "RF2_apr23.pt"
    if torch.cuda.is_available():
        pred = Predictor(model_params, torch.device("cuda:0"))
    else:
        print("WARNING: using CPU")
        pred = Predictor(model_params, torch.device("cpu"))


def get_unique_sequences(seq_list):
    unique_seqs = list(OrderedDict.fromkeys(seq_list))
    return unique_seqs


def get_msa(seq, jobname, cov=50, id=90, max_msa=2048, mode="unpaired_paired"):
    assert mode in ["unpaired", "paired", "unpaired_paired"]
    seqs = [seq] if isinstance(seq, str) else seq

    # collapse homooligomeric sequences
    counts = Counter(seqs)
    u_seqs = list(counts.keys())
    u_nums = list(counts.values())

    # expand homooligomeric sequences
    first_seq = "/".join(sum([[x] * n for x, n in zip(u_seqs, u_nums)], []))
    msa = [first_seq]

    path = os.path.join(jobname, "msa")
    os.makedirs(path, exist_ok=True)
    if mode in ["paired", "unpaired_paired"] and len(u_seqs) > 1:
        print("getting paired MSA")
        out_paired = run_mmseqs2(u_seqs, f"{path}/", use_pairing=True)
        headers, sequences = [], []
        for a3m_lines in out_paired:
            n = -1
            for line in a3m_lines.split("\n"):
                if len(line) > 0:
                    if line.startswith(">"):
                        n += 1
                        if len(headers) < (n + 1):
                            headers.append([])
                            sequences.append([])
                        headers[n].append(line)
                    else:
                        sequences[n].append(line)
        # filter MSA
        with open(f"{path}/paired_in.a3m", "w") as handle:
            for n, sequence in enumerate(sequences):
                handle.write(f">n{n}\n{''.join(sequence)}\n")
        os.system(
            f"hhfilter -i {path}/paired_in.a3m -id {id} -cov {cov} -o {path}/paired_out.a3m"
        )
        with open(f"{path}/paired_out.a3m", "r") as handle:
            for line in handle:
                if line.startswith(">"):
                    n = int(line[2:])
                    xs = sequences[n]
                    # expand homooligomeric sequences
                    xs = ["/".join([x] * num) for x, num in zip(xs, u_nums)]
                    msa.append("/".join(xs))

    if len(msa) < max_msa and (
        mode in ["unpaired", "unpaired_paired"] or len(u_seqs) == 1
    ):
        print("getting unpaired MSA")
        out = run_mmseqs2(u_seqs, f"{path}/")
        Ls = [len(seq) for seq in u_seqs]
        sub_idx = []
        sub_msa = []
        sub_msa_num = 0
        for n, a3m_lines in enumerate(out):
            sub_msa.append([])
            with open(f"{path}/in_{n}.a3m", "w") as handle:
                handle.write(a3m_lines)
            # filter
            os.system(
                f"hhfilter -i {path}/in_{n}.a3m -id {id} -cov {cov} -o {path}/out_{n}.a3m"
            )
            with open(f"{path}/out_{n}.a3m", "r") as handle:
                for line in handle:
                    if not line.startswith(">"):
                        xs = ["-" * l for l in Ls]
                        xs[n] = line.rstrip()
                        # expand homooligomeric sequences
                        xs = ["/".join([x] * num) for x, num in zip(xs, u_nums)]
                        sub_msa[-1].append("/".join(xs))
                        sub_msa_num += 1
            sub_idx.append(list(range(len(sub_msa[-1]))))

        while len(msa) < max_msa and sub_msa_num > 0:
            for n in range(len(sub_idx)):
                if len(sub_idx[n]) > 0:
                    msa.append(sub_msa[n][sub_idx[n].pop(0)])
                    sub_msa_num -= 1
                if len(msa) == max_msa:
                    break

    with open(f"{jobname}/msa.a3m", "w") as handle:
        for n, sequence in enumerate(msa):
            handle.write(f">n{n}\n{sequence}\n")


from Bio.PDB.PDBExceptions import PDBConstructionWarning
import warnings
from Bio.PDB import *
import numpy as np


def add_plddt_to_cif(best_plddts, best_plddt, best_seed, jobname):
    pdb_parser = PDBParser()
    warnings.filterwarnings("ignore", category=PDBConstructionWarning)
    structure = pdb_parser.get_structure(
        "pdb", f"{jobname}/rf2_seed{best_seed}_00_pred.pdb"
    )
    io = MMCIFIO()
    io.set_structure(structure)
    io.save(f"{jobname}/rf2_seed{best_seed}_00_pred.cif")
    plddt_cif = f"""#
loop_
_ma_qa_metric.id
_ma_qa_metric.mode
_ma_qa_metric.name
_ma_qa_metric.software_group_id
_ma_qa_metric.type
1 global pLDDT 1 pLDDT 
2 local  pLDDT 1 pLDDT 
#
_ma_qa_metric_global.metric_id    1
_ma_qa_metric_global.metric_value {best_plddt:.3f}
_ma_qa_metric_global.model_id     1
_ma_qa_metric_global.ordinal_id   1
#
loop_
_ma_qa_metric_local.label_asym_id
_ma_qa_metric_local.label_comp_id
_ma_qa_metric_local.label_seq_id
_ma_qa_metric_local.metric_id
_ma_qa_metric_local.metric_value
_ma_qa_metric_local.model_id
_ma_qa_metric_local.ordinal_id"""

    for chain in structure[0]:
        for i, residue in enumerate(chain):
            plddt_cif += f"\n{chain.id} {residue.resname} {residue.id[1]} 2 {best_plddts[i]*100:.2f} 1 {residue.id[1]}"
    plddt_cif += "\n#"
    with open(f"{jobname}/rf2_seed{best_seed}_00_pred.cif", "a") as f:
        f.write(plddt_cif)


def predict(
    sequence,
    jobname,
    sym,
    order,
    msa_concat_mode,
    msa_method,
    pair_mode,
    collapse_identical,
    num_recycles,
    use_mlm,
    use_dropout,
    max_msa,
    random_seed,
    num_models,
    mode="web",
):
    if not os.path.exists("/home/user/app"):  # crude check if on spaces
        if len(sequence) > 600:
            raise gr.Error(
                f"Your sequence is too long ({len(sequence)}). "
                "Please use the full version of RoseTTAfold2 directly from GitHub."
            )
    random_seed = int(random_seed)
    num_models = int(num_models)
    max_msa = int(max_msa)
    num_recycles = int(num_recycles)
    order = int(order)

    max_extra_msa = max_msa * 8
    sequence = re.sub("[^A-Z:]", "", sequence.replace("/", ":").upper())
    sequence = re.sub(":+", ":", sequence)
    sequence = re.sub("^[:]+", "", sequence)
    sequence = re.sub("[:]+$", "", sequence)

    if sym in ["X", "C"]:
        copies = int(order)
    elif sym in ["D"]:
        copies = int(order) * 2
    else:
        copies = {"T": 12, "O": 24, "I": 60}[sym]
        order = ""
    symm = sym + str(order)

    sequences = sequence.replace(":", "/").split("/")
    if collapse_identical:
        u_sequences = get_unique_sequences(sequences)
    else:
        u_sequences = sequences
    sequences = sum([u_sequences] * copies, [])
    lengths = [len(s) for s in sequences]

    # TODO
    subcrop = 1000 if sum(lengths) > 1400 else -1

    sequence = "/".join(sequences)
    jobname = jobname + "_" + symm + "_" + get_hash(sequence)[:5]

    print(f"jobname: {jobname}")
    print(f"lengths: {lengths}")

    os.makedirs(jobname, exist_ok=True)
    if msa_method == "mmseqs2":
        get_msa(u_sequences, jobname, mode=pair_mode, max_msa=max_extra_msa)

    elif msa_method == "single_sequence":
        u_sequence = "/".join(u_sequences)
        with open(f"{jobname}/msa.a3m", "w") as a3m:
            a3m.write(f">{jobname}\n{u_sequence}\n")

    elif msa_method == "custom_a3m":
        print("upload custom a3m")
        # msa_dict = files.upload()
        lines = msa_dict[list(msa_dict.keys())[0]].decode().splitlines()
        a3m_lines = []
        for line in lines:
            line = line.replace("\x00", "")
            if len(line) > 0 and not line.startswith("#"):
                a3m_lines.append(line)

        with open(f"{jobname}/msa.a3m", "w") as a3m:
            a3m.write("\n".join(a3m_lines))

    best_plddt = None
    best_seed = None
    for seed in range(int(random_seed), int(random_seed) + int(num_models)):
        torch.manual_seed(seed)
        random.seed(seed)
        np.random.seed(seed)
        npz = f"{jobname}/rf2_seed{seed}_00.npz"
        pred.predict(
            inputs=[f"{jobname}/msa.a3m"],
            out_prefix=f"{jobname}/rf2_seed{seed}",
            symm=symm,
            ffdb=None,  # TODO (templates),
            n_recycles=num_recycles,
            msa_mask=0.15 if use_mlm else 0.0,
            msa_concat_mode=msa_concat_mode,
            nseqs=max_msa,
            nseqs_full=max_extra_msa,
            subcrop=subcrop,
            is_training=use_dropout,
        )
        plddt = np.load(npz)["lddt"].mean()
        if best_plddt is None or plddt > best_plddt:
            best_plddt = plddt
            best_plddts = np.load(npz)["lddt"]
            best_seed = seed

        if mode == "web":
            # Mol* only displays AlphaFold plDDT if they are in a cif.
            pdb_parser = PDBParser()
            mmcif_parser = MMCIFParser()

            plddt_cif = add_plddt_to_cif(best_plddts, best_plddt, best_seed, jobname)

            return f"{jobname}/rf2_seed{best_seed}_00_pred.cif"
        else:
            # for api just return a pdb file
            return f"{jobname}/rf2_seed{best_seed}_00_pred.pdb"


def predict_api(
    sequence,
    jobname,
    sym,
    order,
    msa_concat_mode,
    msa_method,
    pair_mode,
    collapse_identical,
    num_recycles,
    use_mlm,
    use_dropout,
    max_msa,
    random_seed,
    num_models,
):
    filename = predict(
        sequence,
        jobname,
        sym,
        order,
        msa_concat_mode,
        msa_method,
        pair_mode,
        collapse_identical,
        num_recycles,
        use_mlm,
        use_dropout,
        max_msa,
        random_seed,
        num_models,
        mode="api",
    )
    with open(f"{filename}") as fp:
        return fp.read()


def molecule(input_pdb, public_link):
    print(input_pdb)
    print(public_link + "/file=" + input_pdb)
    link = public_link + "/file=" + input_pdb
    x = (
        """<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
    <title>PDBe Molstar - Helper functions</title>
    <!-- Molstar CSS & JS -->
    <link rel="stylesheet" type="text/css" href="https://www.ebi.ac.uk/pdbe/pdb-component-library/css/pdbe-molstar-light-3.1.0.css">
    <script type="text/javascript" src="https://www.ebi.ac.uk/pdbe/pdb-component-library/js/pdbe-molstar-plugin-3.1.0.js"></script>
    <style>
      * {
          margin: 0;
          padding: 0;
          box-sizing: border-box;
      }
      .msp-plugin ::-webkit-scrollbar-thumb {
          background-color: #474748 !important;
      }
      .viewerSection {
        margin: 120px 0 0 0px;
      }
      #myViewer{
        float:left;
        width:100%;
        height: 800px;
        position:relative;
      }
      .btn{
      
                font-family: "Open Sans", sans-serif;
                    display: inline-block;
                    outline: none;
                    cursor: pointer;
                    font-weight: 600;
                    border-radius: 3px;
                    padding: 12px 24px;
                    border: 0;
                    margin:0 10px;
                    line-height: 1.15;
                    font-size: 16px;
                    text-decoration: none;
      }
      .btn-orange{
        background: #ff5000;
        color: #fff;
                    
      }
      .btn-gray{
                    color: #3a4149;
                    background: #e7ebee;
       
      }
      .btn:hover{
      transition: all .1s ease;
                        box-shadow: 0 0 0 0 #fff, 0 0 0 3px #ddd;}
    .text-center{
        display: flex;
        align-items: center;
        justify-content: center;
        padding: 20px 0;
        }
    .flex{
    padding: 10px;
        display: flex;
        align-items: center;
        justify-content: center;
        width:fit-content; 
        }
    .flex svg{ 
        margin-right: 10px;
        width:16px;
        height:16px;
        }
        .flex a{
        margin:0 10px;
        }

    </style>
  </head>
  <body>
  <div class="text-center">
    <a class="btn btn-orange flex" href=\""""
        + link
        + """\" target="_blank"> <svg fill="none" stroke="currentColor" stroke-width="1.5" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg" aria-hidden="true">
  <path stroke-linecap="round" stroke-linejoin="round" d="M19.5 13.5L12 21m0 0l-7.5-7.5M12 21V3"></path>
</svg> <span>CIF File</span></a>
    <a class="btn btn-gray flex" href=\""""
        + link.replace(".cif", ".pdb")
        + """\" target="_blank"> <svg fill="none" stroke="currentColor" stroke-width="1.5" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg" aria-hidden="true">
  <path stroke-linecap="round" stroke-linejoin="round" d="M19.5 13.5L12 21m0 0l-7.5-7.5M12 21V3"></path>
</svg>  <span>PDB File</span></a>
    
  </div>
    <div class="viewerSection">
      <!-- Molstar container -->
      <div id="myViewer"></div>
      
    </div>
    <script>
      //Create plugin instance
      var viewerInstance = new PDBeMolstarPlugin();
  
      //Set options (Checkout available options list in the documentation)
      var options = {
        customData: {
          url: \""""
        + link
        + """\",
          format: "cif"
        },
        alphafoldView: true,
        bgColor: {r:255, g:255, b:255},
        //hideCanvasControls: ["selection", "animation", "controlToggle", "controlInfo"]
      }
      
      //Get element from HTML/Template to place the viewer 
      var viewerContainer = document.getElementById("myViewer");
  
      //Call render method to display the 3D view
      viewerInstance.render(viewerContainer, options);
      
    </script>
  </body>
</html>"""
    )

    return f"""<iframe style="width: 100%; height: 1000px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


def predict_web(
    sequence,
    jobname,
    sym,
    order,
    msa_concat_mode,
    msa_method,
    pair_mode,
    collapse_identical,
    num_recycles,
    use_mlm,
    use_dropout,
    max_msa,
    random_seed,
    num_models,
):
    if os.path.exists("/home/user/app"):
        public_link = "https://simonduerr-rosettafold2.hf.space/"
    else:
        public_link = "http://localhost:7860"

    filename = predict(
        sequence,
        jobname,
        sym,
        order,
        msa_concat_mode,
        msa_method,
        pair_mode,
        collapse_identical,
        num_recycles,
        use_mlm,
        use_dropout,
        max_msa,
        random_seed,
        num_models,
        mode="web",
    )

    return molecule(filename, public_link)


with gr.Blocks() as rosettafold:
    gr.Markdown("# RoseTTAFold2")
    gr.Markdown(
        """If using please cite: [manuscript](https://www.biorxiv.org/content/10.1101/2023.05.24.542179v1) 
         <br> Heavily based on [RoseTTAFold2 ColabFold notebook](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/RoseTTAFold2.ipynb)"""
    )
    with gr.Accordion("How to use in PyMol", open=False):
        gr.Markdown(
            """```os.system('wget https://huggingface.co/spaces/simonduerr/rosettafold2/raw/main/rosettafold_pymol.py')
run rosettafold_pymol.py
rosettafold2 sequence, jobname, [sym, order, msa_concat_mode, msa_method, pair_mode, collapse_identical, num_recycles, use_mlm, use_dropout, max_msa, random_seed, num_models]
color_plddt jobname ```
"""
        )
    sequence = gr.Textbox(
        label="sequence",
        value="PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASK",
    )
    jobname = gr.Textbox(label="jobname", value="test")

    with gr.Accordion("Additional settings", open=False):
        sym = gr.Textbox(label="sym", value="X")
        order = gr.Slider(label="order", value=1, step=1, minimum=1, maximum=12)
        msa_concat_mode = gr.Dropdown(
            label="msa_concat_mode",
            value="default",
            choices=["diag", "repeat", "default"],
        )

        msa_method = gr.Dropdown(
            label="msa_method",
            value="single_sequence",
            choices=[
                "mmseqs2",
                "single_sequence",
            ],  # dont allow custom a3m for now , "custom_a3m"
        )
        pair_mode = gr.Dropdown(
            label="pair_mode",
            value="unpaired_paired",
            choices=["unpaired_paired", "paired", "unpaired"],
        )

        num_recycles = gr.Dropdown(
            label="num_recycles", value="6", choices=["0", "1", "3", "6", "12", "24"]
        )

        use_mlm = gr.Checkbox(label="use_mlm", value=False)
        use_dropout = gr.Checkbox(label="use_dropout", value=False)
        collapse_identical = gr.Checkbox(label="collapse_identical", value=False)
        max_msa = gr.Dropdown(
            choices=["16", "32", "64", "128", "256", "512"],
            value="16",
            label="max_msa",
        )
        random_seed = gr.Textbox(label="random_seed", value=0)
        num_models = gr.Dropdown(
            label="num_models", value="1", choices=["1", "2", "4", "8", "16", "32"]
        )

    btn = gr.Button("Run", visible=False)
    btn_web = gr.Button("Run")

    output_plain = gr.HTML()
    output = gr.HTML()

    btn.click(
        fn=predict_api,
        inputs=[
            sequence,
            jobname,
            sym,
            order,
            msa_concat_mode,
            msa_method,
            pair_mode,
            collapse_identical,
            num_recycles,
            use_mlm,
            use_dropout,
            max_msa,
            random_seed,
            num_models,
        ],
        outputs=output_plain,
        api_name="rosettafold2",
    )
    btn_web.click(
        fn=predict_web,
        inputs=[
            sequence,
            jobname,
            sym,
            order,
            msa_concat_mode,
            msa_method,
            pair_mode,
            collapse_identical,
            num_recycles,
            use_mlm,
            use_dropout,
            max_msa,
            random_seed,
            num_models,
        ],
        outputs=output,
    )


rosettafold.launch()