Files changed (1) hide show
  1. README.md +12 -0
README.md CHANGED
@@ -22,6 +22,8 @@ The two collections below bring together the recommended model combinations for:
22
  - [English only content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-english-content-673f2d584d396ce427ade232)
23
  - [multilingual content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-multilingual-content-673f2ec7c6fb004642a24444)
24
 
 
 
25
  ## Vectorizer
26
 
27
  Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in
@@ -55,3 +57,13 @@ Here is an overview of the models we deliver publicly:
55
  | [passage-ranker.strawberry](https://huggingface.co/sinequa/passage-ranker.strawberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
56
  | [passage-ranker.mango](https://huggingface.co/sinequa/passage-ranker.mango) | de, en, es, fr, it, ja, nl, pt, zs, zh-trad | 0.480 | 358 ms | 1070 MiB |
57
  | [passage-ranker.pistachio](https://huggingface.co/sinequa/passage-ranker.pistachio) | de, en, es, fr, it, ja, nl, pl, pt, zs, zh-trad | 0.380 | 358 ms | 1070 MiB |
 
 
 
 
 
 
 
 
 
 
 
22
  - [English only content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-english-content-673f2d584d396ce427ade232)
23
  - [multilingual content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-multilingual-content-673f2ec7c6fb004642a24444)
24
 
25
+ We also deliver Question Answering models (a.k.a. Answer Finders) to be used on top of Neural Search to extract short answers from the most relevant contents.
26
+
27
  ## Vectorizer
28
 
29
  Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in
 
57
  | [passage-ranker.strawberry](https://huggingface.co/sinequa/passage-ranker.strawberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
58
  | [passage-ranker.mango](https://huggingface.co/sinequa/passage-ranker.mango) | de, en, es, fr, it, ja, nl, pt, zs, zh-trad | 0.480 | 358 ms | 1070 MiB |
59
  | [passage-ranker.pistachio](https://huggingface.co/sinequa/passage-ranker.pistachio) | de, en, es, fr, it, ja, nl, pl, pt, zs, zh-trad | 0.380 | 358 ms | 1070 MiB |
60
+
61
+ ## Answer Finder
62
+
63
+ Answer Finder are models which extract a short answer from a given passage given a query. These models tend to be less used due to the wide adoption of LLMs of answer generation usecases.
64
+
65
+ |Model |Languages |de |en |es |fr |ja | Inference Time | GPU Memory |
66
+ |--------------------------------------------------------------------------------------------------|--------------|----|----|----|----|----|----------------|------------|
67
+ |[answer-finder-v1-S-en](https://huggingface.co/sinequa/answer-finder-v1-S-en) |en |70.6|79.5|54.1|0.5 |X | 128 ms |560 MiB |
68
+ |[answer-finder-v1-L-multilingual](https://huggingface.co/sinequa/answer-finder-v1-L-multilingual) |de, en, es, fr|90.8|75.0|67.1|73.4|X | 362 ms |1060 MiB |
69
+ |[answer-finder.yuzu](https://huggingface.co/sinequa/answer-finder.yuzu) |ja |X |X |X |X |91.5| 361 ms |1320 MiB |