Spaces:
Running
Running
Update README.md
#4
by
loic-dagnas-sinequa
- opened
README.md
CHANGED
@@ -22,6 +22,8 @@ The two collections below bring together the recommended model combinations for:
|
|
22 |
- [English only content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-english-content-673f2d584d396ce427ade232)
|
23 |
- [multilingual content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-multilingual-content-673f2ec7c6fb004642a24444)
|
24 |
|
|
|
|
|
25 |
## Vectorizer
|
26 |
|
27 |
Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in
|
@@ -55,3 +57,13 @@ Here is an overview of the models we deliver publicly:
|
|
55 |
| [passage-ranker.strawberry](https://huggingface.co/sinequa/passage-ranker.strawberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
|
56 |
| [passage-ranker.mango](https://huggingface.co/sinequa/passage-ranker.mango) | de, en, es, fr, it, ja, nl, pt, zs, zh-trad | 0.480 | 358 ms | 1070 MiB |
|
57 |
| [passage-ranker.pistachio](https://huggingface.co/sinequa/passage-ranker.pistachio) | de, en, es, fr, it, ja, nl, pl, pt, zs, zh-trad | 0.380 | 358 ms | 1070 MiB |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
- [English only content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-english-content-673f2d584d396ce427ade232)
|
23 |
- [multilingual content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-multilingual-content-673f2ec7c6fb004642a24444)
|
24 |
|
25 |
+
We also deliver Question Answering models (a.k.a. Answer Finders) to be used on top of Neural Search to extract short answers from the most relevant contents.
|
26 |
+
|
27 |
## Vectorizer
|
28 |
|
29 |
Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in
|
|
|
57 |
| [passage-ranker.strawberry](https://huggingface.co/sinequa/passage-ranker.strawberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
|
58 |
| [passage-ranker.mango](https://huggingface.co/sinequa/passage-ranker.mango) | de, en, es, fr, it, ja, nl, pt, zs, zh-trad | 0.480 | 358 ms | 1070 MiB |
|
59 |
| [passage-ranker.pistachio](https://huggingface.co/sinequa/passage-ranker.pistachio) | de, en, es, fr, it, ja, nl, pl, pt, zs, zh-trad | 0.380 | 358 ms | 1070 MiB |
|
60 |
+
|
61 |
+
## Answer Finder
|
62 |
+
|
63 |
+
Answer Finder are models which extract a short answer from a given passage given a query. These models tend to be less used due to the wide adoption of LLMs of answer generation usecases.
|
64 |
+
|
65 |
+
|Model |Languages |de |en |es |fr |ja | Inference Time | GPU Memory |
|
66 |
+
|--------------------------------------------------------------------------------------------------|--------------|----|----|----|----|----|----------------|------------|
|
67 |
+
|[answer-finder-v1-S-en](https://huggingface.co/sinequa/answer-finder-v1-S-en) |en |70.6|79.5|54.1|0.5 |X | 128 ms |560 MiB |
|
68 |
+
|[answer-finder-v1-L-multilingual](https://huggingface.co/sinequa/answer-finder-v1-L-multilingual) |de, en, es, fr|90.8|75.0|67.1|73.4|X | 362 ms |1060 MiB |
|
69 |
+
|[answer-finder.yuzu](https://huggingface.co/sinequa/answer-finder.yuzu) |ja |X |X |X |X |91.5| 361 ms |1320 MiB |
|