File size: 9,635 Bytes
b917882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360f294
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import json
from random import choices
import string
from langchain.tools import BaseTool
import requests
from dotenv import load_dotenv
from dataclasses import dataclass
from langchain_core.language_models.chat_models import BaseChatModel
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Literal,
    Mapping,
    Optional,
    Sequence,
    Type,
    Union,
    cast,
)
from langchain_core.callbacks import (
    CallbackManagerForLLMRun,
)
from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    HumanMessage,
    ToolMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool


class ChatGemini(BaseChatModel): 
     
    @property
    def _llm_type(self) -> str:
        """Get the type of language model used by this chat model."""
        return "gemini"

    api_key :str
    base_url:str =  "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash-exp:generateContent"
    model_kwargs: Any = {}
    
    def _generate(
        self,
        messages: list[BaseMessage],
        stop: Optional[list[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,     
        **kwargs: Any,
    ) -> ChatResult:
        """Generate a chat response using the Gemini API.
        
        This method handles both regular text responses and function calls.
        For function calls, it returns a ToolMessage with structured function call data
        that can be processed by Langchain's agent executor.
        
        Function calls are returned with:
        - tool_name: The name of the function to call
        - tool_call_id: A unique identifier for the function call (name is used as Gemini doesn't provide one)
        - content: The function arguments as a JSON string
        - additional_kwargs: Contains the full function call details
        
        Args:
            messages: List of input messages
            stop: Optional list of stop sequences
            run_manager: Optional callback manager
            **kwargs: Additional arguments passed to the Gemini API
            
        Returns:
            ChatResult containing either an AIMessage for text responses
            or a ToolMessage for function calls
        """
        # Convert messages to Gemini format
        gemini_messages = []
        system_message = None
        for msg in messages:
            # Handle both dict and LangChain message objects
            if isinstance(msg, BaseMessage):
                if isinstance(msg, SystemMessage):
                    system_message = msg.content
                    kwargs["system_instruction"]= {"parts":[{"text": system_message}]}
                    continue
                if isinstance(msg, HumanMessage):
                    role = "user"
                    content = msg.content
                elif isinstance(msg, AIMessage):
                    role = "model"
                    content = msg.content
                elif isinstance(msg, ToolMessage):
                    # Handle tool messages by adding them as function outputs
                    gemini_messages.append(
                        {
                        "role": "model",
                        "parts": [{
                        "functionResponse": {
                            "name": msg.name,
                            "response": {"name": msg.name, "content": msg.content},                         
                        }}]}
                   )
                    continue
            else:
                role = "user" if msg["role"] == "human" else "model"
                content = msg["content"]
                
            message_part = {
                "role": role,
                "parts":[{"functionCall": { "name": msg.tool_calls[0]["name"], "args": msg.tool_calls[0]["args"]}}] if isinstance(msg, AIMessage) and msg.tool_calls else [{"text": content}]
            }
            gemini_messages.append(message_part)
            
       
        
        # Prepare the request
        headers = {
            "Content-Type": "application/json"
        }
        
        params = {
            "key": self.api_key
        }
        
        data = {
            "contents": gemini_messages,
            "generationConfig": {
                "temperature": 0.7,
                "topP": 0.8,
                "topK": 40,
                "maxOutputTokens": 2048,
            },
            **kwargs
        }

       
        try:
            response = requests.post(
                self.base_url,
                headers=headers,
                params=params,
                json=data,
            )
            response.raise_for_status()
            
            result = response.json()
            if "candidates" in result and len(result["candidates"]) > 0 and "parts" in result["candidates"][0]["content"]:
                parts = result["candidates"][0]["content"]["parts"]
                tool_calls = []
                content = ""
                for part in  parts: 
                    if "text" in part:
                        content += part["text"]                                      
                    if "functionCall" in part:                       
                        function_call = part["functionCall"]
                        tool_calls.append( {
                                    "name": function_call["name"],
                                    "id": function_call["name"]+random_string(5), # Gemini doesn't provide a unique id,}
                                    "args": function_call["args"],
                                    "type": "tool_call",})  
                    # Create a proper ToolMessage with structured function call data
                return ChatResult(generations=[
                        ChatGeneration(
                            message=AIMessage(
                                content=content,
                                tool_calls=tool_calls,                                
                            ) if len(tool_calls) > 0 else AIMessage(content=content)
                        )
                    ])
                
        
            else:
                raise Exception("No response generated")
                
        except Exception as e:
            raise Exception(f"Error calling Gemini API: {str(e)}")

   
    def bind_tools(
        self,
        tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]],
        *,
        tool_choice: Optional[Union[dict, str, Literal["auto", "any"], bool]] = None,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        """Bind tool-like objects to this chat model.


        Args:
            tools: A list of tool definitions to bind to this chat model.
                Supports any tool definition handled by
                :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`.
            tool_choice: If provided, which tool for model to call. **This parameter
                is currently ignored as it is not supported by Ollama.**
            kwargs: Any additional parameters are passed directly to
                ``self.bind(**kwargs)``.
        """
        
        formatted_tools = {"function_declarations": [convert_to_gemini_tool(tool) for tool in tools]}
        return super().bind(tools=formatted_tools, **kwargs)
    
def convert_to_gemini_tool(
    tool: Union[BaseTool],
    *,
    strict: Optional[bool] = None,
) -> dict[str, Any]:
    """Convert a tool-like object to an Gemini tool schema.

    Gemini tool schema reference:
   https://ai.google.dev/gemini-api/docs/function-calling#function_calling_mode

    Args:
        tool:           
            BaseTool. 
        strict:
            If True, model output is guaranteed to exactly match the JSON Schema
            provided in the function definition. If None, ``strict`` argument will not
            be included in tool definition.

    Returns:
        A dict version of the passed in tool which is compatible with the
        Gemini tool-calling API.
    """
    if isinstance(tool, BaseTool):
        # Extract the tool's schema
        schema = tool.args_schema.schema() if tool.args_schema else {"type": "object", "properties": {}}
        
        #convert to gemini schema 
        raw_properties = schema.get("properties", {})
        properties = {}
        for key, value in raw_properties.items():
            properties[key] = {
                "type": value.get("type", "string"),
                "description": value.get("title", ""),
            }
        
        
        # Build the function definition
        function_def = {
            "name": tool.name,
            "description": tool.description,
            "parameters": {
                "type": "object",
                "properties": properties,
                "required": schema.get("required", [])
            }
        }
        
        if strict is not None:
            function_def["strict"] = strict
            
        return function_def
    else:
        raise ValueError(f"Unsupported tool type: {type(tool)}")

def random_string(length: int) -> str:
    return ''.join(choices(string.ascii_letters + string.digits, k=length))