|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from sklearn import svm |
|
import gradio as gr |
|
from PIL import Image |
|
|
|
def calculate_score(clf): |
|
xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) |
|
X_test = np.c_[xx.ravel(), yy.ravel()] |
|
Y_test = np.logical_xor(xx.ravel() > 0, yy.ravel() > 0) |
|
return clf.score(X_test, Y_test) |
|
|
|
def getColorMap(kernel, gamma): |
|
|
|
np.random.seed(0) |
|
X = np.random.randn(300, 2) |
|
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) |
|
|
|
|
|
clf = svm.NuSVC(kernel=kernel, gamma=gamma) |
|
clf.fit(X, Y) |
|
|
|
|
|
xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) |
|
|
|
|
|
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) |
|
Z = Z.reshape(xx.shape) |
|
|
|
plt.imshow( |
|
Z, |
|
interpolation="nearest", |
|
extent=(xx.min(), xx.max(), yy.min(), yy.max()), |
|
aspect="auto", |
|
origin="lower", |
|
cmap=plt.cm.PuOr_r, |
|
) |
|
contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linestyles="dashed") |
|
plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors='k') |
|
plt.title(f"Decision function for Non-Linear SVC with the {kernel} kernel and '{gamma}' gamma ", fontsize='14') |
|
plt.xlabel("X",fontsize='13') |
|
plt.ylabel("Y",fontsize='13') |
|
return plt, calculate_score(clf) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Learning the XOR function: An application of Binary Classification using Non-linear SVM") |
|
gr.Markdown("### This demo is based on this [scikit-learn example](https://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html#sphx-glr-auto-examples-svm-plot-svm-nonlinear-py).") |
|
gr.Markdown("### In this demo, we use a non-linear SVC (Support Vector Classifier) to learn the decision function of the XOR operator.") |
|
|
|
xor_image = Image.open("xor.png") |
|
gr.Image(xor_image, label="Table explaining the 'XOR' operator", shape = (208.5, 250)) |
|
|
|
gr.HTML("<hr>") |
|
|
|
gr.Markdown("### Furthermore, we observe that we get different decision function plots by varying the Kernel and Gamma hyperparameters of the non-linear SVC.") |
|
|
|
gr.Markdown("### Feel free to experiment with kernel and gamma values below to see how the quality of the decision function changes with the hyperparameters.") |
|
|
|
inp1 = gr.Radio(['poly', 'rbf', 'sigmoid'], label="Kernel", info="Choose a kernel") |
|
inp2 = gr.Radio(['scale', 'auto'], label="Gamma", info="Choose a gamma value") |
|
btn = gr.Button(value="Submit") |
|
|
|
with gr.Row(): |
|
plot = gr.Plot(label=f"Decision function plot for Non-Linear SVC with the '{inp1}' kernel and '{inp2}' gamma ") |
|
num = gr.Textbox(label="Test Accuracy") |
|
|
|
btn.click(getColorMap, inputs=[inp1, inp2], outputs=[plot, num]) |
|
|
|
|
|
if __name__ == "__main__": |
|
print("hdh") |
|
demo.launch() |
|
print("gedhhfhf") |