File size: 4,306 Bytes
4ed06b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74e3c1
4ed06b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83750f3
 
 
 
 
 
 
4ed06b9
31bfb1f
83750f3
 
 
 
 
4ed06b9
 
 
 
 
83750f3
4ed06b9
 
 
 
83750f3
4ed06b9
b74e3c1
4ed06b9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
==========================================================
Gradio demo to Plot multi-class SGD on the iris dataset
==========================================================

Plot decision surface of multi-class SGD on iris dataset.
The hyperplanes corresponding to the three one-versus-all (OVA) classifiers
are represented by the dashed lines.

Created by Syed Affan <saffand03@gmail.com>

"""
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import SGDClassifier
from sklearn.inspection import DecisionBoundaryDisplay
import matplotlib.cm

def make_plot(alpha,max_iter,Standardize):
# import some data to play with
    iris = datasets.load_iris()
    fig = plt.figure()

# we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
    X = iris.data[:, :2]
    y = iris.target
    colors = "bry"

# shuffle
    idx = np.arange(X.shape[0])
    np.random.seed(13)
    np.random.shuffle(idx)
    X = X[idx]
    y = y[idx]

# standardize
    if Standardize:
        mean = X.mean(axis=0)
        std = X.std(axis=0)
        X = (X - mean) / std


    clf = SGDClassifier(alpha=alpha, max_iter=max_iter).fit(X, y)
    accuracy = clf.score(X,y)
    acc = f'### The Accuracy on the entire dataset: {accuracy}'
    ax = plt.gca()
    DecisionBoundaryDisplay.from_estimator(
        clf,
        X,
        cmap=matplotlib.cm.Paired,
        ax=ax,
        response_method="predict",
        xlabel=iris.feature_names[0],
        ylabel=iris.feature_names[1],
    )
    plt.axis("tight")

# Plot also the training points
    for i, color in zip(clf.classes_, colors):
        idx = np.where(y == i)
        plt.scatter(
            X[idx, 0],
            X[idx, 1],
            c=color,
            label=iris.target_names[i],
            cmap=matplotlib.cm.Paired,
            edgecolor="black",
            s=20,
        )
    plt.title("Decision surface of multi-class SGD")
    plt.axis("tight")

# Plot the three one-against-all classifiers
    xmin, xmax = plt.xlim()
    ymin, ymax = plt.ylim()
    coef = clf.coef_
    intercept = clf.intercept_


    def plot_hyperplane(c, color):
        def line(x0):
            return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]

        plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color)


    for i, color in zip(clf.classes_, colors):
        plot_hyperplane(i, color)
    plt.legend()
    
    return fig,acc

title = "Plot multi-class SGD on the iris dataset"

model_card = f"""
## Description
This interactive demo is based on the [Plot multi-class SGD on the iris dataset](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html#sphx-glr-auto-examples-linear-model-plot-sgd-iris-py) example from the popular [scikit-learn](https://scikit-learn.org/stable/)  library, which is a widely-used library for machine learning in Python. 
This demo plots the decision surface of multi-class SGD on the iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines.
You can play with the following hyperparameters:
`alpha` is a constant that multiplies the regularization term. The higher the value, the stronger the regularization. 
`max_iter` is the maximum number of passes over the training data (aka epochs). 
`Standardise` centers the dataset

## Dataset
[Iris Dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set)

## Model
currentmodule: [sklearn.linear_model](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model)
class:`SGDClassifier` is the estimator used in this example.

"""

with gr.Blocks(title=title) as demo:
    gr.Markdown('''
            <div>
            <h1 style='text-align: center'>Plot multi-class SGD on iris dataset</h1>
            </div>
        ''')
 
    gr.Markdown(model_card)
    gr.Markdown("Author: <a href=\"https://huggingface.co/sulpha\">sulpha</a>")
    d0 = gr.Slider(0.001,5,step=0.001,value=0.001,label='alpha')
    d1 = gr.Slider(1,1001,step=10,value=100,label='max_iter')
    d2 = gr.Checkbox(value=True,label='Standardize')

    btn =gr.Button(value='Submit')
    btn.click(make_plot,inputs=[d0,d1,d2],outputs=[gr.Plot(),gr.Markdown()])

demo.launch()