|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MS-STFT discriminator, provided here for reference.""" |
|
|
|
import typing as tp |
|
|
|
import torchaudio |
|
import torch |
|
from torch import nn |
|
from einops import rearrange |
|
|
|
from modules.vocoder_blocks import * |
|
|
|
|
|
FeatureMapType = tp.List[torch.Tensor] |
|
LogitsType = torch.Tensor |
|
DiscriminatorOutput = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]] |
|
|
|
|
|
def get_2d_padding( |
|
kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1) |
|
): |
|
return ( |
|
((kernel_size[0] - 1) * dilation[0]) // 2, |
|
((kernel_size[1] - 1) * dilation[1]) // 2, |
|
) |
|
|
|
|
|
class DiscriminatorSTFT(nn.Module): |
|
"""STFT sub-discriminator. |
|
Args: |
|
filters (int): Number of filters in convolutions |
|
in_channels (int): Number of input channels. Default: 1 |
|
out_channels (int): Number of output channels. Default: 1 |
|
n_fft (int): Size of FFT for each scale. Default: 1024 |
|
hop_length (int): Length of hop between STFT windows for each scale. Default: 256 |
|
kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)`` |
|
stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)`` |
|
dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]`` |
|
win_length (int): Window size for each scale. Default: 1024 |
|
normalized (bool): Whether to normalize by magnitude after stft. Default: True |
|
norm (str): Normalization method. Default: `'weight_norm'` |
|
activation (str): Activation function. Default: `'LeakyReLU'` |
|
activation_params (dict): Parameters to provide to the activation function. |
|
growth (int): Growth factor for the filters. Default: 1 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
filters: int, |
|
in_channels: int = 1, |
|
out_channels: int = 1, |
|
n_fft: int = 1024, |
|
hop_length: int = 256, |
|
win_length: int = 1024, |
|
max_filters: int = 1024, |
|
filters_scale: int = 1, |
|
kernel_size: tp.Tuple[int, int] = (3, 9), |
|
dilations: tp.List = [1, 2, 4], |
|
stride: tp.Tuple[int, int] = (1, 2), |
|
normalized: bool = True, |
|
norm: str = "weight_norm", |
|
activation: str = "LeakyReLU", |
|
activation_params: dict = {"negative_slope": 0.2}, |
|
): |
|
super().__init__() |
|
assert len(kernel_size) == 2 |
|
assert len(stride) == 2 |
|
self.filters = filters |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.normalized = normalized |
|
self.activation = getattr(torch.nn, activation)(**activation_params) |
|
self.spec_transform = torchaudio.transforms.Spectrogram( |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
window_fn=torch.hann_window, |
|
normalized=self.normalized, |
|
center=False, |
|
pad_mode=None, |
|
power=None, |
|
) |
|
spec_channels = 2 * self.in_channels |
|
self.convs = nn.ModuleList() |
|
self.convs.append( |
|
NormConv2d( |
|
spec_channels, |
|
self.filters, |
|
kernel_size=kernel_size, |
|
padding=get_2d_padding(kernel_size), |
|
) |
|
) |
|
in_chs = min(filters_scale * self.filters, max_filters) |
|
for i, dilation in enumerate(dilations): |
|
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters) |
|
self.convs.append( |
|
NormConv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=(dilation, 1), |
|
padding=get_2d_padding(kernel_size, (dilation, 1)), |
|
norm=norm, |
|
) |
|
) |
|
in_chs = out_chs |
|
out_chs = min( |
|
(filters_scale ** (len(dilations) + 1)) * self.filters, max_filters |
|
) |
|
self.convs.append( |
|
NormConv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=(kernel_size[0], kernel_size[0]), |
|
padding=get_2d_padding((kernel_size[0], kernel_size[0])), |
|
norm=norm, |
|
) |
|
) |
|
self.conv_post = NormConv2d( |
|
out_chs, |
|
self.out_channels, |
|
kernel_size=(kernel_size[0], kernel_size[0]), |
|
padding=get_2d_padding((kernel_size[0], kernel_size[0])), |
|
norm=norm, |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
"""Discriminator STFT Module is the sub module of MultiScaleSTFTDiscriminator. |
|
|
|
Args: |
|
x (torch.Tensor): input tensor of shape [B, 1, Time] |
|
|
|
Returns: |
|
z: z is the output of the last convolutional layer of shape |
|
fmap: fmap is the list of feature maps of every convolutional layer of shape |
|
""" |
|
fmap = [] |
|
z = self.spec_transform(x) |
|
z = torch.cat([z.real, z.imag], dim=1) |
|
z = rearrange(z, "b c w t -> b c t w") |
|
for i, layer in enumerate(self.convs): |
|
z = layer(z) |
|
|
|
z = self.activation(z) |
|
fmap.append(z) |
|
z = self.conv_post(z) |
|
return z, fmap |
|
|
|
|
|
class MultiScaleSTFTDiscriminator(nn.Module): |
|
"""Multi-Scale STFT (MS-STFT) discriminator. |
|
Args: |
|
filters (int): Number of filters in convolutions |
|
in_channels (int): Number of input channels. Default: 1 |
|
out_channels (int): Number of output channels. Default: 1 |
|
n_ffts (Sequence[int]): Size of FFT for each scale |
|
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale |
|
win_lengths (Sequence[int]): Window size for each scale |
|
**kwargs: additional args for STFTDiscriminator |
|
""" |
|
|
|
def __init__( |
|
self, |
|
cfg, |
|
in_channels: int = 1, |
|
out_channels: int = 1, |
|
n_ffts: tp.List[int] = [1024, 2048, 512], |
|
hop_lengths: tp.List[int] = [256, 512, 256], |
|
win_lengths: tp.List[int] = [1024, 2048, 512], |
|
**kwargs, |
|
): |
|
self.cfg = cfg |
|
super().__init__() |
|
assert len(n_ffts) == len(hop_lengths) == len(win_lengths) |
|
self.discriminators = nn.ModuleList( |
|
[ |
|
DiscriminatorSTFT( |
|
filters=self.cfg.model.msstftd.filters, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
n_fft=n_ffts[i], |
|
win_length=win_lengths[i], |
|
hop_length=hop_lengths[i], |
|
**kwargs, |
|
) |
|
for i in range(len(n_ffts)) |
|
] |
|
) |
|
self.num_discriminators = len(self.discriminators) |
|
|
|
def forward(self, y, y_hat) -> DiscriminatorOutput: |
|
"""Multi-Scale STFT (MS-STFT) discriminator. |
|
|
|
Args: |
|
x (torch.Tensor): input waveform |
|
|
|
Returns: |
|
logits: list of every discriminator's output |
|
fmaps: list of every discriminator's feature maps, |
|
each feature maps is a list of Discriminator STFT's every layer |
|
""" |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for disc in self.discriminators: |
|
y_d_r, fmap_r = disc(y) |
|
y_d_g, fmap_g = disc(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|