Spaces:
Running
Running
from threading import Thread | |
from typing import Iterator | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
model_id = "meta-llama/Llama-2-7b-chat-hf" | |
if torch.cuda.is_available(): | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
else: | |
model = None | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str: | |
texts = [f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"] | |
# The first user input is _not_ stripped | |
do_strip = False | |
for user_input, response in chat_history: | |
user_input = user_input.strip() if do_strip else user_input | |
do_strip = True | |
texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ") | |
message = message.strip() if do_strip else message | |
texts.append(f"{message} [/INST]") | |
return "".join(texts) | |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int: | |
prompt = get_prompt(message, chat_history, system_prompt) | |
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"] | |
return input_ids.shape[-1] | |
def run( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.8, | |
top_p: float = 0.95, | |
top_k: int = 50, | |
) -> Iterator[str]: | |
prompt = get_prompt(message, chat_history, system_prompt) | |
inputs = tokenizer([prompt], return_tensors="pt", add_special_tokens=False).to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |