test2 / sgmse /model.py
Shokoufehhh's picture
Upload 49 files
b3a65d4 verified
raw
history blame
21.5 kB
import time
from math import ceil
import warnings
import torch
import pytorch_lightning as pl
import torch.distributed as dist
from torchaudio import load
from torch_ema import ExponentialMovingAverage
from librosa import resample
from sgmse import sampling
from sgmse.sdes import SDERegistry
from sgmse.backbones import BackboneRegistry
from sgmse.util.inference import evaluate_model
from sgmse.util.other import pad_spec, si_sdr
from pesq import pesq
from pystoi import stoi
from torch_pesq import PesqLoss
class ScoreModel(pl.LightningModule):
@staticmethod
def add_argparse_args(parser):
parser.add_argument("--lr", type=float, default=1e-4, help="The learning rate (1e-4 by default)")
parser.add_argument("--ema_decay", type=float, default=0.999, help="The parameter EMA decay constant (0.999 by default)")
parser.add_argument("--t_eps", type=float, default=0.03, help="The minimum process time (0.03 by default)")
parser.add_argument("--num_eval_files", type=int, default=20, help="Number of files for speech enhancement performance evaluation during training. Pass 0 to turn off (no checkpoints based on evaluation metrics will be generated).")
parser.add_argument("--loss_type", type=str, default="score_matching", help="The type of loss function to use.")
parser.add_argument("--loss_weighting", type=str, default="sigma^2", help="The weighting of the loss function.")
parser.add_argument("--network_scaling", type=str, default=None, help="The type of loss scaling to use.")
parser.add_argument("--c_in", type=str, default="1", help="The input scaling for x.")
parser.add_argument("--c_out", type=str, default="1", help="The output scaling.")
parser.add_argument("--c_skip", type=str, default="0", help="The skip connection scaling.")
parser.add_argument("--sigma_data", type=float, default=0.1, help="The data standard deviation.")
parser.add_argument("--l1_weight", type=float, default=0.001, help="The balance between the time-frequency and time-domain losses.")
parser.add_argument("--pesq_weight", type=float, default=0.0, help="The balance between the time-frequency and time-domain losses.")
parser.add_argument("--sr", type=int, default=16000, help="The sample rate of the audio files.")
return parser
def __init__(
self, backbone, sde, lr=1e-4, ema_decay=0.999, t_eps=0.03, num_eval_files=20, loss_type='score_matching',
loss_weighting='sigma^2', network_scaling=None, c_in='1', c_out='1', c_skip='0', sigma_data=0.1,
l1_weight=0.001, pesq_weight=0.0, sr=16000, data_module_cls=None, **kwargs
):
"""
Create a new ScoreModel.
Args:
backbone: Backbone DNN that serves as a score-based model.
sde: The SDE that defines the diffusion process.
lr: The learning rate of the optimizer. (1e-4 by default).
ema_decay: The decay constant of the parameter EMA (0.999 by default).
t_eps: The minimum time to practically run for to avoid issues very close to zero (1e-5 by default).
loss_type: The type of loss to use (wrt. noise z/std). Options are 'mse' (default), 'mae'
"""
super().__init__()
# Initialize Backbone DNN
self.backbone = backbone
dnn_cls = BackboneRegistry.get_by_name(backbone)
self.dnn = dnn_cls(**kwargs)
# Initialize SDE
sde_cls = SDERegistry.get_by_name(sde)
self.sde = sde_cls(**kwargs)
# Store hyperparams and save them
self.lr = lr
self.ema_decay = ema_decay
self.ema = ExponentialMovingAverage(self.parameters(), decay=self.ema_decay)
self._error_loading_ema = False
self.t_eps = t_eps
self.loss_type = loss_type
self.loss_weighting = loss_weighting
self.l1_weight = l1_weight
self.pesq_weight = pesq_weight
self.network_scaling = network_scaling
self.c_in = c_in
self.c_out = c_out
self.c_skip = c_skip
self.sigma_data = sigma_data
self.num_eval_files = num_eval_files
self.sr = sr
# Initialize PESQ loss if pesq_weight > 0.0
if pesq_weight > 0.0:
self.pesq_loss = PesqLoss(1.0, sample_rate=sr).eval()
for param in self.pesq_loss.parameters():
param.requires_grad = False
self.save_hyperparameters(ignore=['no_wandb'])
self.data_module = data_module_cls(**kwargs, gpu=kwargs.get('gpus', 0) > 0)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
return optimizer
def optimizer_step(self, *args, **kwargs):
# Method overridden so that the EMA params are updated after each optimizer step
super().optimizer_step(*args, **kwargs)
self.ema.update(self.dnn.parameters())
# on_load_checkpoint / on_save_checkpoint needed for EMA storing/loading
def on_load_checkpoint(self, checkpoint):
ema = checkpoint.get('ema', None)
if ema is not None:
self.ema.load_state_dict(checkpoint['ema'])
else:
self._error_loading_ema = True
warnings.warn("EMA state_dict not found in checkpoint!")
def on_save_checkpoint(self, checkpoint):
checkpoint['ema'] = self.ema.state_dict()
def train(self, mode, no_ema=False):
res = super().train(mode) # call the standard `train` method with the given mode
if not self._error_loading_ema:
if mode == False and not no_ema:
# eval
self.ema.store(self.dnn.parameters()) # store current params in EMA
self.ema.copy_to(self.dnn.parameters()) # copy EMA parameters over current params for evaluation
else:
# train
if self.ema.collected_params is not None:
self.ema.restore(self.dnn.parameters()) # restore the EMA weights (if stored)
return res
def eval(self, no_ema=False):
return self.train(False, no_ema=no_ema)
def _loss(self, forward_out, x_t, z, t, mean, x):
"""
Different loss functions can be used to train the score model, see the paper:
Julius Richter, Danilo de Oliveira, and Timo Gerkmann
"Investigating Training Objectives for Generative Speech Enhancement"
https://arxiv.org/abs/2409.10753
"""
sigma = self.sde._std(t)[:, None, None, None]
if self.loss_type == "score_matching":
score = forward_out
if self.loss_weighting == "sigma^2":
losses = torch.square(torch.abs(score * sigma + z)) # Eq. (7)
else:
raise ValueError("Invalid loss weighting for loss_type=score_matching: {}".format(self.loss_weighting))
# Sum over spatial dimensions and channels and mean over batch
loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1))
elif self.loss_type == "denoiser":
score = forward_out
D = score * sigma.pow(2) + x_t # equivalent to Eq. (10)
losses = torch.square(torch.abs(D - mean)) # Eq. (8)
if self.loss_weighting == "1":
losses = losses
elif self.loss_weighting == "sigma^2":
losses = losses * sigma**2
elif self.loss_weighting == "edm":
losses = ((sigma**2 + self.sigma_data**2)/((sigma*self.sigma_data)**2))[:, None, None, None] * losses
else:
raise ValueError("Invalid loss weighting for loss_type=denoiser: {}".format(self.loss_weighting))
# Sum over spatial dimensions and channels and mean over batch
loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1))
elif self.loss_type == "data_prediction":
x_hat = forward_out
B, C, F, T = x.shape
# losses in the time-frequency domain (tf)
losses_tf = (1/(F*T))*torch.square(torch.abs(x_hat - x))
losses_tf = torch.mean(0.5*torch.sum(losses_tf.reshape(losses_tf.shape[0], -1), dim=-1))
# losses in the time domain (td)
target_len = (self.data_module.num_frames - 1) * self.data_module.hop_length
x_hat_td = self.to_audio(x_hat.squeeze(), target_len)
x_td = self.to_audio(x.squeeze(), target_len)
losses_l1 = (1 / target_len) * torch.abs(x_hat_td - x_td)
losses_l1 = torch.mean(0.5*torch.sum(losses_l1.reshape(losses_l1.shape[0], -1), dim=-1))
# losses using PESQ
if self.pesq_weight > 0.0:
losses_pesq = self.pesq_loss(x_td, x_hat_td)
losses_pesq = torch.mean(losses_pesq)
# combine the losses
loss = losses_tf + self.l1_weight * losses_l1 + self.pesq_weight * losses_pesq
else:
loss = losses_tf + self.l1_weight * losses_l1
else:
raise ValueError("Invalid loss type: {}".format(self.loss_type))
return loss
def _step(self, batch, batch_idx):
x, y = batch
t = torch.rand(x.shape[0], device=x.device) * (self.sde.T - self.t_eps) + self.t_eps
mean, std = self.sde.marginal_prob(x, y, t)
z = torch.randn_like(x) # i.i.d. normal distributed with var=0.5
sigma = std[:, None, None, None]
x_t = mean + sigma * z
forward_out = self(x_t, y, t)
loss = self._loss(forward_out, x_t, z, t, mean, x)
return loss
def training_step(self, batch, batch_idx):
loss = self._step(batch, batch_idx)
self.log('train_loss', loss, on_step=True, on_epoch=True, sync_dist=True, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
# Evaluate speech enhancement performance
if batch_idx == 0 and self.num_eval_files != 0:
rank = dist.get_rank()
world_size = dist.get_world_size()
# Split the evaluation files among the GPUs
eval_files_per_gpu = self.num_eval_files // world_size
clean_files = self.data_module.valid_set.clean_files[:self.num_eval_files]
noisy_files = self.data_module.valid_set.noisy_files[:self.num_eval_files]
# Select the files for this GPU
if rank == world_size - 1:
clean_files = clean_files[rank*eval_files_per_gpu:]
noisy_files = noisy_files[rank*eval_files_per_gpu:]
else:
clean_files = clean_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu]
noisy_files = noisy_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu]
# Evaluate the performance of the model
pesq_sum = 0; si_sdr_sum = 0; estoi_sum = 0;
for (clean_file, noisy_file) in zip(clean_files, noisy_files):
# Load the clean and noisy speech
x, sr_x = load(clean_file)
x = x.squeeze().numpy()
y, sr_y = load(noisy_file)
assert sr_x == sr_y, "Sample rates of clean and noisy files do not match!"
# Resample if necessary
if sr_x != 16000:
x_16k = resample(x, orig_sr=sr_x, target_sr=16000).squeeze()
else:
x_16k = x
# Enhance the noisy speech
x_hat = self.enhance(y, N=self.sde.N)
if self.sr != 16000:
x_hat_16k = resample(x_hat, orig_sr=self.sr, target_sr=16000).squeeze()
else:
x_hat_16k = x_hat
pesq_sum += pesq(16000, x_16k, x_hat_16k, 'wb')
si_sdr_sum += si_sdr(x, x_hat)
estoi_sum += stoi(x, x_hat, self.sr, extended=True)
pesq_avg = pesq_sum / len(clean_files)
si_sdr_avg = si_sdr_sum / len(clean_files)
estoi_avg = estoi_sum / len(clean_files)
self.log('pesq', pesq_avg, on_step=False, on_epoch=True, sync_dist=True)
self.log('si_sdr', si_sdr_avg, on_step=False, on_epoch=True, sync_dist=True)
self.log('estoi', estoi_avg, on_step=False, on_epoch=True, sync_dist=True)
loss = self._step(batch, batch_idx)
self.log('valid_loss', loss, on_step=False, on_epoch=True, sync_dist=True)
return loss
def forward(self, x_t, y, t):
"""
The model forward pass. In [1] and [2], the model estimates the score function. In [3], the model estimates
either the score function or the target data for the Schrödinger bridge (loss_type='data_prediction').
[1] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, and Timo Gerkmann
"Speech Enhancement and Dereverberation with Diffusion-Based Generative Models"
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023.
[2] Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, and Timo Gerkmann
"EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation"
ISCA Interspecch, Kos, Greece, Sept. 2024.
[3] Julius Richter, Danilo de Oliveira, and Timo Gerkmann
"Investigating Training Objectives for Generative Speech Enhancement"
https://arxiv.org/abs/2409.10753
"""
# In [3], we use new code with backbone='ncsnpp_v2':
if self.backbone == "ncsnpp_v2":
F = self.dnn(self._c_in(t) * x_t, self._c_in(t) * y, t)
# Scaling the network output, see below Eq. (7) in the paper
if self.network_scaling == "1/sigma":
std = self.sde._std(t)
F = F / std[:, None, None, None]
elif self.network_scaling == "1/t":
F = F / t[:, None, None, None]
# The loss type determines the output of the model
if self.loss_type == "score_matching":
score = self._c_skip(t) * x_t + self._c_out(t) * F
return score
elif self.loss_type == "denoiser":
sigmas = self.sde._std(t)[:, None, None, None]
score = (F - x_t) / sigmas.pow(2)
return score
elif self.loss_type == 'data_prediction':
x_hat = self._c_skip(t) * x_t + self._c_out(t) * F
return x_hat
# In [1] and [2], we use the old code:
else:
dnn_input = torch.cat([x_t, y], dim=1)
score = -self.dnn(dnn_input, t)
return score
def _c_in(self, t):
if self.c_in == "1":
return 1.0
elif self.c_in == "edm":
sigma = self.sde._std(t)
return (1.0 / torch.sqrt(sigma**2 + self.sigma_data**2))[:, None, None, None]
else:
raise ValueError("Invalid c_in type: {}".format(self.c_in))
def _c_out(self, t):
if self.c_out == "1":
return 1.0
elif self.c_out == "sigma":
return self.sde._std(t)[:, None, None, None]
elif self.c_out == "1/sigma":
return 1.0 / self.sde._std(t)[:, None, None, None]
elif self.c_out == "edm":
sigma = self.sde._std(t)
return ((sigma * self.sigma_data) / torch.sqrt(self.sigma_data**2 + sigma**2))[:, None, None, None]
else:
raise ValueError("Invalid c_out type: {}".format(self.c_out))
def _c_skip(self, t):
if self.c_skip == "0":
return 0.0
elif self.c_skip == "edm":
sigma = self.sde._std(t)
return (self.sigma_data**2 / (sigma**2 + self.sigma_data**2))[:, None, None, None]
else:
raise ValueError("Invalid c_skip type: {}".format(self.c_skip))
def to(self, *args, **kwargs):
"""Override PyTorch .to() to also transfer the EMA of the model weights"""
self.ema.to(*args, **kwargs)
return super().to(*args, **kwargs)
def get_pc_sampler(self, predictor_name, corrector_name, y, N=None, minibatch=None, **kwargs):
N = self.sde.N if N is None else N
sde = self.sde.copy()
sde.N = N
kwargs = {"eps": self.t_eps, **kwargs}
if minibatch is None:
return sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y, **kwargs)
else:
M = y.shape[0]
def batched_sampling_fn():
samples, ns = [], []
for i in range(int(ceil(M / minibatch))):
y_mini = y[i*minibatch:(i+1)*minibatch]
sampler = sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y_mini, **kwargs)
sample, n = sampler()
samples.append(sample)
ns.append(n)
samples = torch.cat(samples, dim=0)
return samples, ns
return batched_sampling_fn
def get_ode_sampler(self, y, N=None, minibatch=None, **kwargs):
N = self.sde.N if N is None else N
sde = self.sde.copy()
sde.N = N
kwargs = {"eps": self.t_eps, **kwargs}
if minibatch is None:
return sampling.get_ode_sampler(sde, self, y=y, **kwargs)
else:
M = y.shape[0]
def batched_sampling_fn():
samples, ns = [], []
for i in range(int(ceil(M / minibatch))):
y_mini = y[i*minibatch:(i+1)*minibatch]
sampler = sampling.get_ode_sampler(sde, self, y=y_mini, **kwargs)
sample, n = sampler()
samples.append(sample)
ns.append(n)
samples = torch.cat(samples, dim=0)
return sample, ns
return batched_sampling_fn
def get_sb_sampler(self, sde, y, sampler_type="ode", N=None, **kwargs):
N = sde.N if N is None else N
sde = self.sde.copy()
sde.N = N if N is not None else sde.N
return sampling.get_sb_sampler(sde, self, y=y, sampler_type=sampler_type, **kwargs)
def train_dataloader(self):
return self.data_module.train_dataloader()
def val_dataloader(self):
return self.data_module.val_dataloader()
def test_dataloader(self):
return self.data_module.test_dataloader()
def setup(self, stage=None):
return self.data_module.setup(stage=stage)
def to_audio(self, spec, length=None):
return self._istft(self._backward_transform(spec), length)
def _forward_transform(self, spec):
return self.data_module.spec_fwd(spec)
def _backward_transform(self, spec):
return self.data_module.spec_back(spec)
def _stft(self, sig):
return self.data_module.stft(sig)
def _istft(self, spec, length=None):
return self.data_module.istft(spec, length)
def enhance(self, y, sampler_type="pc", predictor="reverse_diffusion",
corrector="ald", N=30, corrector_steps=1, snr=0.5, timeit=False,
**kwargs
):
"""
One-call speech enhancement of noisy speech `y`, for convenience.
"""
start = time.time()
T_orig = y.size(1)
norm_factor = y.abs().max().item()
y = y / norm_factor
Y = torch.unsqueeze(self._forward_transform(self._stft(y.cuda())), 0)
Y = pad_spec(Y)
# SGMSE sampling with OUVE SDE
if self.sde.__class__.__name__ == 'OUVESDE':
if self.sde.sampler_type == "pc":
sampler = self.get_pc_sampler(predictor, corrector, Y.cuda(), N=N,
corrector_steps=corrector_steps, snr=snr, intermediate=False,
**kwargs)
elif self.sde.sampler_type == "ode":
sampler = self.get_ode_sampler(Y.cuda(), N=N, **kwargs)
else:
raise ValueError("Invalid sampler type for SGMSE sampling: {}".format(sampler_type))
# Schrödinger bridge sampling with VE SDE
elif self.sde.__class__.__name__ == 'SBVESDE':
sampler = self.get_sb_sampler(sde=self.sde, y=Y.cuda(), sampler_type=self.sde.sampler_type)
else:
raise ValueError("Invalid SDE type for speech enhancement: {}".format(self.sde.__class__.__name__))
sample, nfe = sampler()
x_hat = self.to_audio(sample.squeeze(), T_orig)
x_hat = x_hat * norm_factor
x_hat = x_hat.squeeze().cpu().numpy()
end = time.time()
if timeit:
rtf = (end-start)/(len(x_hat)/self.sr)
return x_hat, nfe, rtf
else:
return x_hat