File size: 12,283 Bytes
eafd2db
 
 
 
 
 
 
 
 
 
1ae7ce1
bd2ac8b
fc2587a
eafd2db
 
 
 
 
 
 
 
 
 
e1e82d3
ed54dd5
 
 
 
 
e1e82d3
 
 
5840d6c
e1e82d3
eafd2db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e82d3
eafd2db
 
 
 
e1e82d3
eafd2db
 
 
 
 
 
 
 
 
 
871125f
 
eafd2db
 
 
 
783c3ff
 
e899207
 
 
eafd2db
 
bd2ac8b
eafd2db
 
4f478b4
6619f95
 
4f478b4
2c03eb3
4f478b4
 
 
 
 
 
04819e9
4f478b4
d3c1d96
eafd2db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e82d3
eafd2db
 
 
 
 
 
 
e1e82d3
eafd2db
 
 
 
 
 
 
 
 
 
 
 
e1e82d3
eafd2db
f3759ce
8b74db5
e1e82d3
8b74db5
fc2587a
dfa1834
 
 
f3759ce
 
 
 
 
 
d7bbf40
 
f3759ce
d7bbf40
 
 
 
8b74db5
eafd2db
 
 
 
 
 
1c3571e
 
 
 
4f1cad7
 
 
 
 
65dc503
4f1cad7
 
 
65dc503
 
4f1cad7
ce0ca30
65dc503
 
 
 
e1e82d3
65dc503
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import colorsys
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from metrics import *
import torchvision.transforms as T
import gradio as gr
import matplotlib.pyplot as plt
import tempfile
import os 
import spaces 
import cv2 

from huggingface_hub import snapshot_download

from huggingface_hub import login
login(token = os.getenv('HF_TOKEN'))

model_dir = snapshot_download(
    repo_id="srijaydeshpande/spadesegresnet"
)

color_map = {
'outside_roi' : (255, 255, 255), # white
'tumor' : (255, 0, 0), # red
'stroma' : (0, 0, 255), # blue
'inflammatory' : (0, 255, 0), # green
'necrosis' : (255, 255, 0), # yello
'others' : (8, 133, 161) # cyan
}
class_labels = ['outside_roi', 'tumor', 'stroma', 'inflammatory', 'necrosis', 'others']
colors = ['white', 'red', 'blue', 'green', 'yellow', 'cyan']

class SPADE(nn.Module):
    def __init__(self, norm_nc, label_nc, norm):
        super().__init__()

        if norm == 'instance':
            self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
        elif norm == 'batch':
            self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)

        # The dimension of the intermediate embedding space. Yes, hardcoded.
        nhidden = 128
        ks = 3
        pw = ks // 2
        self.mlp_shared = nn.Sequential(
            nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
            nn.ReLU()
        )
        self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
        self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)

    def forward(self, x, segmap):

        # Part 1. generate parameter-free normalized activations
        normalized = self.param_free_norm(x)

        # Part 2. produce scaling and bias conditioned on semantic map
        segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
        actv = self.mlp_shared(segmap)
        gamma = self.mlp_gamma(actv)
        beta = self.mlp_beta(actv)

        # apply scale and bias
        out = normalized * (1 + gamma) + beta

        return out

class SPADEResnetBlock(nn.Module):
    def __init__(self, fin, fout):
        super().__init__()
        # Attributes
        self.learned_shortcut = (fin != fout)
        fmiddle = min(fin, fout)

        # create conv layers
        self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
        self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
        if self.learned_shortcut:
            self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)

        # define normalization layers
        self.norm_0 = SPADE(fin, 3, norm='instance')
        self.norm_1 = SPADE(fmiddle, 3, norm='instance')
        if self.learned_shortcut:
            self.norm_s = SPADE(fin, 3, norm='instance')

    def forward(self, x, seg):
        x_s = self.shortcut(x, seg)

        dx = self.conv_0(self.actvn(self.norm_0(x, seg)))
        dx = self.conv_1(self.actvn(self.norm_1(dx, seg)))

        out = x_s + dx

        return out

    def shortcut(self, x, seg):
        if self.learned_shortcut:
            x_s = self.conv_s(self.norm_s(x, seg))
        else:
            x_s = x
        return x_s

    def actvn(self, x):
        return F.leaky_relu(x, 2e-1)

class ResnetBlock(nn.Module):

    def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
      super(ResnetBlock, self).__init__()
      self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)

    def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
      conv_block = []
      p = 0
      if padding_type == 'reflect':
        conv_block += [nn.ReflectionPad2d(1)]
      elif padding_type == 'replicate':
        conv_block += [nn.ReplicationPad2d(1)]
      elif padding_type == 'zero':
        p = 1
      else:
        raise NotImplementedError('padding [%s] is not implemented' % padding_type)

      conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                     norm_layer(dim),
                     activation]

      if use_dropout:
        conv_block += [nn.Dropout(0.5)]

      p = 0
      if padding_type == 'reflect':
        conv_block += [nn.ReflectionPad2d(1)]
      elif padding_type == 'replicate':
        conv_block += [nn.ReplicationPad2d(1)]
      elif padding_type == 'zero':
        p = 1
      else:
        raise NotImplementedError('padding [%s] is not implemented' % padding_type)
      conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                     norm_layer(dim)]

      return nn.Sequential(*conv_block)

    def forward(self, x):
      out = x + self.conv_block(x)
      return out

class SPADEResNet(torch.nn.Module):

    def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=5, norm_layer=nn.BatchNorm2d,
                 padding_type='reflect'):
        assert (n_blocks >= 0)
        super(SPADEResNet, self).__init__()
        activation = nn.ReLU(True)

        downsampler = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]

        ### downsample
        for i in range(n_downsampling):
            mult = 2 ** i
            downsampler += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), activation]
        self.downsampler = nn.Sequential(*downsampler)

        ### resnet blocks
        mult = 2 ** n_downsampling
        self.resnetblocks1 = SPADEResnetBlock(ngf * mult, ngf * mult)
        self.resnetblocks2 = SPADEResnetBlock(ngf * mult, ngf * mult)
        self.resnetblocks3 = SPADEResnetBlock(ngf * mult, ngf * mult)
        self.resnetblocks4 = SPADEResnetBlock(ngf * mult, ngf * mult)
        self.resnetblocks5 = SPADEResnetBlock(ngf * mult, ngf * mult)

        ### upsample
        upsampler = []
        for i in range(n_downsampling):
            mult = 2 ** (n_downsampling - i)
            upsampler += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1,
                                         output_padding=1),
                      norm_layer(int(ngf * mult / 2)), activation]

        upsampler += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]

        self.upsampler = nn.Sequential(*upsampler)

    def forward(self, input):
        downsampled = self.downsampler(input)
        resnet1 = self.resnetblocks1(downsampled, input)
        resnet2 = self.resnetblocks1(resnet1, input)
        resnet3 = self.resnetblocks1(resnet2, input)
        resnet4 = self.resnetblocks1(resnet3, input)
        resnet5 = self.resnetblocks1(resnet4, input)
        upsampled = self.upsampler(resnet5)
        return upsampled

def generate_colors(n):
  brightness = 0.7
  hsv = [(i / n, 1, brightness) for i in range(n)]
  colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
  colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),colors))
  return colors

def generate_colored_image(labels):
    # colors = generate_colors(6)
    w, h = labels.shape
    new_mk = np.empty([w, h, 3])
    for i in range(0,w):
        for j in range(0,h):
            new_mk[i][j] = color_map[class_labels[labels[i][j]]]
    new_mk = new_mk.astype(np.uint8)
    return Image.fromarray(new_mk)

def predict_wsi(image):
    patch_size = 768
    stride = 700 # stride is kept relatively lower than the tile size so as to allow some overlap while constructing bigger regions
    generator_output_size = patch_size
    num_classes=5
    pred_labels = torch.zeros(1, num_classes+1, image.shape[2], image.shape[3]).cuda()
    counter_tensor = torch.zeros(1, 1, image.shape[2], image.shape[3]).cuda()
    for i in range(0, image.shape[2] - patch_size + stride, stride):
        for j in range(0, image.shape[3] - patch_size + stride, stride):
            i_lowered = min(i, image.shape[2] - patch_size)
            j_lowered = min(j, image.shape[3] - patch_size)
            patch = image[:, :, i_lowered:i_lowered + patch_size, j_lowered:j_lowered + patch_size]
            pred_labels_patch = model(patch.float())
            update_region_i = i_lowered # + (patch_size - generator_output_size) // 2
            update_region_j = j_lowered # + (patch_size - generator_output_size) // 2
            pred_labels[:, :, update_region_i:update_region_i + generator_output_size, update_region_j:update_region_j + generator_output_size] += pred_labels_patch
            counter_tensor[:, :, update_region_i:update_region_i + generator_output_size, update_region_j:update_region_j + generator_output_size] += 1
    pred_labels /= counter_tensor
    return pred_labels

@spaces.GPU(duration=120)
def segment_image(image):
    img = image
    img = np.asarray(img)

    # resize if necessary
    h, w = img.shape[:2]
    min_side=768
    if min(h, w) < min_side:
        scale = min_side / min(h, w)
        new_w, new_h = int(w * scale), int(h * scale)
        # Convert NumPy array to PIL Image
        image = Image.fromarray(img)
        # Resize the image using PIL
        resized_image = image.resize((new_w, new_h))
        img = np.array(resized_image)
    
    if (np.max(img) > 100):
        img = img / 255.0
    transform = T.Compose([T.ToTensor()])
    image = transform(img)
    image = image[None, :]
    with torch.no_grad():
        pred_labels = predict_wsi(image.float())
    pred_labels = F.softmax(pred_labels, dim=1)
    pred_labels_probs = pred_labels.cpu().numpy()
    pred_labels = np.argmax(pred_labels_probs, axis=1)
    pred_labels = pred_labels[0]
    image = generate_colored_image(pred_labels)
    pixels_counts = []
    total=0
    print(np.unique(pred_labels))
    for i in range(1,len(class_labels)):
        current_count=np.sum(pred_labels == i)
        pixels_counts.append(current_count)
        total+=current_count
    pixels_counts = [(value / total) * 100 for value in pixels_counts]
    print(pixels_counts)
    plt.figure(figsize=(10, 6))
    bar_width = 0.15
    plt.bar(class_labels[1:], pixels_counts, color=colors[1:], width=bar_width)
    plt.xticks(rotation=45, ha='right')
    plt.xlabel('Tissue types', fontsize=17)
    plt.ylabel('Class Percentage', fontsize=17)
    plt.title('Classes distribution', fontsize=18)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.tight_layout()
    with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmpfile:
        plt.savefig(tmpfile.name)
        temp_filename = tmpfile.name
    stats = Image.open(temp_filename)

    # legend = Image.open('legend.png')

    superimposed_image = superimpose_images(img, image)

    return image, stats, superimposed_image

def superimpose_images(image1, image2):

    if image1.dtype != np.uint8:
            image1 = (image1 * 255).astype(np.uint8) if image1.max() <= 1 else image1.astype(np.uint8)
    # Convert NumPy arrays to PIL images
    image1 = Image.fromarray(image1)

    # Resize image1 to match image2's size
    image1 = image1.resize(image2.size)

    image_np = np.array(image1)
    heatmap_np = np.array(image2)

    superimposed_np = cv2.addWeighted(heatmap_np, 0.2, image_np, 1, 0)
    superimposed_pil = Image.fromarray(superimposed_np)

    return superimposed_pil


model_path = os.path.join(model_dir, 'spaderesnet.pt')
model = SPADEResNet(input_nc=3, output_nc=6)
model = nn.DataParallel(model)
model = model.cuda()
model.load_state_dict(torch.load(model_path), strict=True)
examples = [
    ["sample1.png"],
    ["sample2.png"]
]

with gr.Row():
        # First column: Input and first output
        with gr.Column():
            input_image = gr.Image(label="Input Image")  # Input image
            output1 = gr.Image(label="Segmentation Mask")  # First output
        
        # Second column: Remaining three outputs
        with gr.Column():
            output3 = gr.Image(label="Statistics")  # Third output
            output4 = gr.Image(label="Superimposed Map")  # Fourth output

    
demo = gr.Interface(
    segment_image,
    inputs=input_image,
    examples=examples,
    outputs=[output1, output3, output4],
    title="Breast Cancer Semantic Segmentation"
)

demo.launch()