File size: 1,046 Bytes
9ad0b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr

# Path to the fine-tuned model
model_path = "stas-l/Ukr-Lit-SP"

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("malteos/gpt2-uk")
model = AutoModelForCausalLM.from_pretrained(model_path)

# Initialize pipeline
generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)

# Function for Q&A style response
def question_answer(user_input):
    # Pass only the user input as the prompt
    result = generation_pipeline(
        user_input, 
        max_length=120, 
        num_return_sequences=1, 
        pad_token_id=tokenizer.eos_token_id
    )
    # Return the generated response
    return result[0]["generated_text"].strip()

# Gradio Interface
iface = gr.Interface(
    fn=question_answer,
    inputs="text",
    outputs="text",
    title="GPT-2 Ukrainian Q&A",
    description="Задайте будь-яке питання, і модель відповість."
)

# Launch interface
iface.launch()