Spaces:
Runtime error
Runtime error
import os | |
from dataclasses import dataclass | |
import torch | |
import json | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from safetensors import safe_open | |
from safetensors.torch import load_file as load_sft | |
from optimum.quanto import requantize | |
from .model import Flux, FluxParams | |
from .controlnet import ControlNetFlux | |
from .modules.autoencoder import AutoEncoder, AutoEncoderParams | |
from .modules.conditioner import HFEmbedder | |
from .annotator.dwpose import DWposeDetector | |
from .annotator.mlsd import MLSDdetector | |
from .annotator.canny import CannyDetector | |
from .annotator.midas import MidasDetector | |
from .annotator.hed import HEDdetector | |
from .annotator.tile import TileDetector | |
from .annotator.zoe import ZoeDetector | |
def load_safetensors(path): | |
tensors = {} | |
with safe_open(path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
tensors[key] = f.get_tensor(key) | |
return tensors | |
def get_lora_rank(checkpoint): | |
for k in checkpoint.keys(): | |
if k.endswith(".down.weight"): | |
return checkpoint[k].shape[0] | |
def load_checkpoint(local_path, repo_id, name): | |
if local_path is not None: | |
if '.safetensors' in local_path: | |
print(f"Loading .safetensors checkpoint from {local_path}") | |
checkpoint = load_safetensors(local_path) | |
else: | |
print(f"Loading checkpoint from {local_path}") | |
checkpoint = torch.load(local_path, map_location='cpu') | |
elif repo_id is not None and name is not None: | |
print(f"Loading checkpoint {name} from repo id {repo_id}") | |
checkpoint = load_from_repo_id(repo_id, name) | |
else: | |
raise ValueError( | |
"LOADING ERROR: you must specify local_path or repo_id with name in HF to download" | |
) | |
return checkpoint | |
def c_crop(image): | |
width, height = image.size | |
new_size = min(width, height) | |
left = (width - new_size) / 2 | |
top = (height - new_size) / 2 | |
right = (width + new_size) / 2 | |
bottom = (height + new_size) / 2 | |
return image.crop((left, top, right, bottom)) | |
def pad64(x): | |
return int(np.ceil(float(x) / 64.0) * 64 - x) | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def safer_memory(x): | |
# Fix many MAC/AMD problems | |
return np.ascontiguousarray(x.copy()).copy() | |
#https://github.com/Mikubill/sd-webui-controlnet/blob/main/scripts/processor.py#L17 | |
#Added upscale_method, mode params | |
def resize_image_with_pad(input_image, resolution, skip_hwc3=False, mode='edge'): | |
if skip_hwc3: | |
img = input_image | |
else: | |
img = HWC3(input_image) | |
H_raw, W_raw, _ = img.shape | |
if resolution == 0: | |
return img, lambda x: x | |
k = float(resolution) / float(min(H_raw, W_raw)) | |
H_target = int(np.round(float(H_raw) * k)) | |
W_target = int(np.round(float(W_raw) * k)) | |
img = cv2.resize(img, (W_target, H_target), interpolation=cv2.INTER_AREA) | |
H_pad, W_pad = pad64(H_target), pad64(W_target) | |
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode) | |
def remove_pad(x): | |
return safer_memory(x[:H_target, :W_target, ...]) | |
return safer_memory(img_padded), remove_pad | |
class Annotator: | |
def __init__(self, name: str, device: str): | |
if name == "canny": | |
processor = CannyDetector() | |
elif name == "openpose": | |
processor = DWposeDetector(device) | |
elif name == "depth": | |
processor = MidasDetector() | |
elif name == "hed": | |
processor = HEDdetector() | |
elif name == "hough": | |
processor = MLSDdetector() | |
elif name == "tile": | |
processor = TileDetector() | |
elif name == "zoe": | |
processor = ZoeDetector() | |
self.name = name | |
self.processor = processor | |
def __call__(self, image: Image, width: int, height: int): | |
image = np.array(image) | |
detect_resolution = max(width, height) | |
image, remove_pad = resize_image_with_pad(image, detect_resolution) | |
image = np.array(image) | |
if self.name == "canny": | |
result = self.processor(image, low_threshold=100, high_threshold=200) | |
elif self.name == "hough": | |
result = self.processor(image, thr_v=0.05, thr_d=5) | |
elif self.name == "depth": | |
result = self.processor(image) | |
result, _ = result | |
else: | |
result = self.processor(image) | |
result = HWC3(remove_pad(result)) | |
result = cv2.resize(result, (width, height)) | |
return result | |
class ModelSpec: | |
params: FluxParams | |
ae_params: AutoEncoderParams | |
ckpt_path: str | None | |
ae_path: str | None | |
repo_id: str | None | |
repo_flow: str | None | |
repo_ae: str | None | |
repo_id_ae: str | None | |
configs = { | |
"flux-dev": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
repo_id_ae="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux1-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV"), | |
params=FluxParams( | |
in_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-dev-fp8": ModelSpec( | |
repo_id="XLabs-AI/flux-dev-fp8", | |
repo_id_ae="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux-dev-fp8.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_DEV_FP8"), | |
params=FluxParams( | |
in_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-schnell": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-schnell", | |
repo_id_ae="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux1-schnell.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_SCHNELL"), | |
params=FluxParams( | |
in_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=False, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
} | |
def print_load_warning(missing: list[str], unexpected: list[str]) -> None: | |
if len(missing) > 0 and len(unexpected) > 0: | |
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
print("\n" + "-" * 79 + "\n") | |
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
elif len(missing) > 0: | |
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
elif len(unexpected) > 0: | |
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
def load_from_repo_id(repo_id, checkpoint_name): | |
ckpt_path = hf_hub_download(repo_id, checkpoint_name) | |
sd = load_sft(ckpt_path, device='cpu') | |
return sd | |
def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True): | |
# Loading Flux | |
print("Init model") | |
ckpt_path = configs[name].ckpt_path | |
if ( | |
ckpt_path is None | |
and configs[name].repo_id is not None | |
and configs[name].repo_flow is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow) | |
with torch.device("meta" if ckpt_path is not None else device): | |
model = Flux(configs[name].params).to(torch.bfloat16) | |
if ckpt_path is not None: | |
print("Loading checkpoint") | |
# load_sft doesn't support torch.device | |
sd = load_sft(ckpt_path, device=str(device)) | |
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) | |
print_load_warning(missing, unexpected) | |
return model | |
def load_flow_model2(name: str, device: str | torch.device = "cuda", hf_download: bool = True): | |
# Loading Flux | |
print("Init model") | |
ckpt_path = configs[name].ckpt_path | |
if ( | |
ckpt_path is None | |
and configs[name].repo_id is not None | |
and configs[name].repo_flow is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow.replace("sft", "safetensors")) | |
with torch.device("meta" if ckpt_path is not None else device): | |
model = Flux(configs[name].params) | |
if ckpt_path is not None: | |
print("Loading checkpoint") | |
# load_sft doesn't support torch.device | |
sd = load_sft(ckpt_path, device=str(device)) | |
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True) | |
print_load_warning(missing, unexpected) | |
return model | |
def load_flow_model_quintized(name: str, device: str | torch.device = "cuda", hf_download: bool = True): | |
# Loading Flux | |
print("Init model") | |
ckpt_path = configs[name].ckpt_path | |
if ( | |
ckpt_path is None | |
and configs[name].repo_id is not None | |
and configs[name].repo_flow is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow) | |
json_path = hf_hub_download(configs[name].repo_id, 'flux_dev_quantization_map.json') | |
model = Flux(configs[name].params).to(torch.bfloat16) | |
print("Loading checkpoint") | |
# load_sft doesn't support torch.device | |
sd = load_sft(ckpt_path, device='cpu') | |
with open(json_path, "r") as f: | |
quantization_map = json.load(f) | |
print("Start a quantization process...") | |
requantize(model, sd, quantization_map, device=device) | |
print("Model is quantized!") | |
return model | |
def load_controlnet(name, device, transformer=None): | |
with torch.device(device): | |
controlnet = ControlNetFlux(configs[name].params) | |
if transformer is not None: | |
controlnet.load_state_dict(transformer.state_dict(), strict=False) | |
return controlnet | |
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder: | |
# max length 64, 128, 256 and 512 should work (if your sequence is short enough) | |
return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device) | |
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder: | |
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device) | |
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder: | |
ckpt_path = configs[name].ae_path | |
if ( | |
ckpt_path is None | |
and configs[name].repo_id is not None | |
and configs[name].repo_ae is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id_ae, configs[name].repo_ae) | |
# Loading the autoencoder | |
print("Init AE") | |
with torch.device("meta" if ckpt_path is not None else device): | |
ae = AutoEncoder(configs[name].ae_params) | |
if ckpt_path is not None: | |
sd = load_sft(ckpt_path, device=str(device)) | |
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True) | |
print_load_warning(missing, unexpected) | |
return ae | |
class WatermarkEmbedder: | |
def __init__(self, watermark): | |
self.watermark = watermark | |
self.num_bits = len(WATERMARK_BITS) | |
self.encoder = WatermarkEncoder() | |
self.encoder.set_watermark("bits", self.watermark) | |
def __call__(self, image: torch.Tensor) -> torch.Tensor: | |
""" | |
Adds a predefined watermark to the input image | |
Args: | |
image: ([N,] B, RGB, H, W) in range [-1, 1] | |
Returns: | |
same as input but watermarked | |
""" | |
image = 0.5 * image + 0.5 | |
squeeze = len(image.shape) == 4 | |
if squeeze: | |
image = image[None, ...] | |
n = image.shape[0] | |
image_np = rearrange((255 * image).detach().cpu(), "n b c h w -> (n b) h w c").numpy()[:, :, :, ::-1] | |
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255] | |
# watermarking libary expects input as cv2 BGR format | |
for k in range(image_np.shape[0]): | |
image_np[k] = self.encoder.encode(image_np[k], "dwtDct") | |
image = torch.from_numpy(rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)).to( | |
image.device | |
) | |
image = torch.clamp(image / 255, min=0.0, max=1.0) | |
if squeeze: | |
image = image[0] | |
image = 2 * image - 1 | |
return image | |
# A fixed 48-bit message that was choosen at random | |
WATERMARK_MESSAGE = 0b001010101111111010000111100111001111010100101110 | |
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 | |
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] | |