Spaces:
Running
on
T4
Running
on
T4
# YOLOv5 | |
<!-- [ALGORITHM] --> | |
## Abstract | |
YOLOv5 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. | |
<div align=center> | |
<img src="https://user-images.githubusercontent.com/27466624/200000324-70ae078f-cea7-4189-8baa-440656797dad.jpg"/> | |
YOLOv5-l-P5 model structure | |
</div> | |
<div align=center> | |
<img src="https://user-images.githubusercontent.com/27466624/211143533-1725c1b2-6189-4c3a-a046-ad968e03cb9d.jpg"/> | |
YOLOv5-l-P6 model structure | |
</div> | |
## Results and models | |
### COCO | |
| Backbone | Arch | size | Mask Refine | SyncBN | AMP | Mem (GB) | box AP | TTA box AP | Config | Download | | |
| :-------: | :--: | :--: | :---------: | :----: | :-: | :------: | :---------: | :--------: | :-----------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | |
| YOLOv5-n | P5 | 640 | No | Yes | Yes | 1.5 | 28.0 | 30.7 | [config](./yolov5_n-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739-b804c1ad.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739.log.json) | | |
| YOLOv5-n | P5 | 640 | Yes | Yes | Yes | 1.5 | 28.0 | | [config](./mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_152706-712fb1b2.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_152706.log.json) | | |
| YOLOv5u-n | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_n_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) | | |
| YOLOv5-s | P5 | 640 | No | Yes | Yes | 2.7 | 37.7 | 40.2 | [config](./yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json) | | |
| YOLOv5-s | P5 | 640 | Yes | Yes | Yes | 2.7 | 38.0 (+0.3) | | [config](./mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230304_033134-8e0cd271.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230304_033134.log.json) | | |
| YOLOv5u-s | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_s_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) | | |
| YOLOv5-m | P5 | 640 | No | Yes | Yes | 5.0 | 45.3 | 46.9 | [config](./yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco/yolov5_m-v61_syncbn_fast_8xb16-300e_coco_20220917_204944-516a710f.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco/yolov5_m-v61_syncbn_fast_8xb16-300e_coco_20220917_204944.log.json) | | |
| YOLOv5-m | P5 | 640 | Yes | Yes | Yes | 5.0 | 45.3 | | [config](./mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_153946-44e96155.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_153946.log.json) | | |
| YOLOv5u-m | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_m_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) | | |
| YOLOv5-l | P5 | 640 | No | Yes | Yes | 8.1 | 48.8 | 49.9 | [config](./yolov5_l-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco/yolov5_l-v61_syncbn_fast_8xb16-300e_coco_20220917_031007-096ef0eb.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco/yolov5_l-v61_syncbn_fast_8xb16-300e_coco_20220917_031007.log.json) | | |
| YOLOv5-l | P5 | 640 | Yes | Yes | Yes | 8.1 | 49.3 (+0.5) | | [config](./mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154301-2c1d912a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154301.log.json) | | |
| YOLOv5u-l | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_l_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) | | |
| YOLOv5-x | P5 | 640 | No | Yes | Yes | 12.2 | 50.2 | | [config](./yolov5_x-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco/yolov5_x-v61_syncbn_fast_8xb16-300e_coco_20230305_152943-00776a4b.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco/yolov5_x-v61_syncbn_fast_8xb16-300e_coco_20230305_152943.log.json) | | |
| YOLOv5-x | P5 | 640 | Yes | Yes | Yes | 12.2 | 50.9 (+0.7) | | [config](./mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154321-07edeb62.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154321.log.json) | | |
| YOLOv5u-x | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_x_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) | | |
| YOLOv5-n | P6 | 1280 | No | Yes | Yes | 5.8 | 35.9 | | [config](./yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_224705-d493c5f3.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_224705.log.json) | | |
| YOLOv5-s | P6 | 1280 | No | Yes | Yes | 10.5 | 44.4 | | [config](./yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_215044-58865c19.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_215044.log.json) | | |
| YOLOv5-m | P6 | 1280 | No | Yes | Yes | 19.1 | 51.3 | | [config](./yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_230453-49564d58.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_230453.log.json) | | |
| YOLOv5-l | P6 | 1280 | No | Yes | Yes | 30.5 | 53.7 | | [config](./yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_234308-7a2ba6bf.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_234308.log.json) | | |
**Note**: | |
1. `fast` means that `YOLOv5DetDataPreprocessor` and `yolov5_collate` are used for data preprocessing, which is faster for training, but less flexible for multitasking. Recommended to use fast version config if you only care about object detection. | |
2. `detect` means that the network input is fixed to `640x640` and the post-processing thresholds is modified. | |
3. `SyncBN` means use SyncBN, `AMP` indicates training with mixed precision. | |
4. We use 8x A100 for training, and the single-GPU batch size is 16. This is different from the official code. | |
5. The performance is unstable and may fluctuate by about 0.4 mAP and the highest performance weight in `COCO` training in `YOLOv5` may not be the last epoch. | |
6. `TTA` means that Test Time Augmentation. It's perform 3 multi-scaling transformations on the image, followed by 2 flipping transformations (flipping and not flipping). You only need to specify `--tta` when testing to enable. see [TTA](https://github.com/open-mmlab/mmyolo/blob/dev/docs/en/common_usage/tta.md) for details. | |
7. The performance of `Mask Refine` training is for the weight performance officially released by YOLOv5. `Mask Refine` means refining bbox by mask while loading annotations and transforming after `YOLOv5RandomAffine`, `Copy Paste` means using `YOLOv5CopyPaste`. | |
8. `YOLOv5u` models use the same loss functions and split Detect head as `YOLOv8` models for improved performance, but only requires 300 epochs. | |
### COCO Instance segmentation | |
| Backbone | Arch | size | SyncBN | AMP | Mem (GB) | Box AP | Mask AP | Config | Download | | |
| :-------------------: | :--: | :--: | :----: | :-: | :------: | :----: | :-----: | :--------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | |
| YOLOv5-n | P5 | 640 | Yes | Yes | 3.3 | 27.9 | 23.7 | [config](./ins_seg/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_104807-84cc9240.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_104807.log.json) | | |
| YOLOv5-s | P5 | 640 | Yes | Yes | 4.8 | 38.1 | 32.0 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542-3e570436.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542.log.json) | | |
| YOLOv5-s(non-overlap) | P5 | 640 | Yes | Yes | 4.8 | 38.0 | 32.1 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642-6780d34e.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642.log.json) | | |
| YOLOv5-m | P5 | 640 | Yes | Yes | 7.3 | 45.1 | 37.3 | [config](./ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529-ef5ba1a9.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529.log.json) | | |
| YOLOv5-l | P5 | 640 | Yes | Yes | 10.7 | 48.8 | 39.9 | [config](./ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049-daa09f70.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049.log.json) | | |
| YOLOv5-x | P5 | 640 | Yes | Yes | 15.0 | 50.6 | 41.4 | [config](./ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925-a260c798.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925.log.json) | | |
**Note**: | |
1. `Non-overlap` refers to the instance-level masks being stored in the format (num_instances, h, w) instead of (h, w). Storing masks in overlap format consumes less memory and GPU memory. | |
2. For the M model, the `affine_scale` parameter should be 0.9, but due to some reason, we set it to 0.5 and found that the mAP did not change. Therefore, the released M model has an `affine_scale` parameter of 0.5, which is inconsistent with the value of 0.9 in the configuration. | |
### VOC | |
| Backbone | size | Batchsize | AMP | Mem (GB) | box AP(COCO metric) | Config | Download | | |
| :------: | :--: | :-------: | :-: | :------: | :-----------------: | :-------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | |
| YOLOv5-n | 512 | 64 | Yes | 3.5 | 51.2 | [config](./yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_fast_1xb64-50e_voc/yolov5_n-v61_fast_1xb64-50e_voc_20221017_234254-f1493430.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_fast_1xb64-50e_voc/yolov5_n-v61_fast_1xb64-50e_voc_20221017_234254.log.json) | | |
| YOLOv5-s | 512 | 64 | Yes | 6.5 | 62.7 | [config](./yolov5/voc/yolov5_s-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_fast_1xb64-50e_voc/yolov5_s-v61_fast_1xb64-50e_voc_20221017_234156-0009b33e.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_fast_1xb64-50e_voc/yolov5_s-v61_fast_1xb64-50e_voc_20221017_234156.log.json) | | |
| YOLOv5-m | 512 | 64 | Yes | 12.0 | 70.1 | [config](./yolov5/voc/yolov5_m-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_fast_1xb64-50e_voc/yolov5_m-v61_fast_1xb64-50e_voc_20221017_114138-815c143a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_fast_1xb64-50e_voc/yolov5_m-v61_fast_1xb64-50e_voc_20221017_114138.log.json) | | |
| YOLOv5-l | 512 | 32 | Yes | 10.0 | 73.1 | [config](./yolov5/voc/yolov5_l-v61_fast_1xb32-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_fast_1xb32-50e_voc/yolov5_l-v61_fast_1xb32-50e_voc_20221017_045500-edc7e0d8.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_fast_1xb32-50e_voc/yolov5_l-v61_fast_1xb32-50e_voc_20221017_045500.log.json) | | |
**Note**: | |
1. Training on VOC dataset need pretrained model which trained on COCO. | |
2. The performance is unstable and may fluctuate by about 0.4 mAP. | |
3. Official YOLOv5 use COCO metric, while training VOC dataset. | |
4. We converted the VOC test dataset to COCO format offline, while reproducing mAP result as shown above. We will support to use COCO metric while training VOC dataset in later version. | |
5. Hyperparameter reference from `https://wandb.ai/glenn-jocher/YOLOv5_VOC_official`. | |
### CrowdHuman | |
Since the `iscrowd` annotation of the COCO dataset is not equivalent to `ignore`, we use the CrowdHuman dataset to verify that the YOLOv5 ignore logic is correct. | |
| Backbone | size | SyncBN | AMP | Mem (GB) | ignore_iof_thr | box AP50(CrowDHuman Metric) | MR | JI | Config | Download | | |
| :------: | :--: | :----: | :-: | :------: | :------------: | :-------------------------: | :--: | :---: | :------------------------------------------------------------------------: | :------: | | |
| YOLOv5-s | 640 | Yes | Yes | 2.6 | -1 | 85.79 | 48.7 | 75.33 | [config](./yolov5/crowdhuman/yolov5_s-v61_fast_8xb16-300e_crowdhuman.py) | | | |
| YOLOv5-s | 640 | Yes | Yes | 2.6 | 0.5 | 86.17 | 48.8 | 75.87 | [config](./yolov5/crowdhuman/yolov5_s-v61_8xb16-300e_ignore_crowdhuman.py) | | | |
**Note**: | |
1. `ignore_iof_thr` is -1 indicating that the ignore tag is not considered. We adjusted with `ignore_iof_thr` thresholds of 0.5, 0.8, 0.9, and the results show that 0.5 has the best performance. | |
2. The above table shows the performance of the model with the best performance on the validation set. The best performing models are around 160+ epoch which means that there is no need to train so many epochs. | |
3. This is a very simple implementation that simply replaces COCO's anchor with the `tools/analysis_tools/optimize_anchors.py` script. We'll adjust other parameters later to improve performance. | |
## Citation | |
```latex | |
@software{glenn_jocher_2022_7002879, | |
author = {Glenn Jocher and | |
Ayush Chaurasia and | |
Alex Stoken and | |
Jirka Borovec and | |
NanoCode012 and | |
Yonghye Kwon and | |
TaoXie and | |
Kalen Michael and | |
Jiacong Fang and | |
imyhxy and | |
Lorna and | |
Colin Wong and | |
曾逸夫(Zeng Yifu) and | |
Abhiram V and | |
Diego Montes and | |
Zhiqiang Wang and | |
Cristi Fati and | |
Jebastin Nadar and | |
Laughing and | |
UnglvKitDe and | |
tkianai and | |
yxNONG and | |
Piotr Skalski and | |
Adam Hogan and | |
Max Strobel and | |
Mrinal Jain and | |
Lorenzo Mammana and | |
xylieong}, | |
title = {{ultralytics/yolov5: v6.2 - YOLOv5 Classification | |
Models, Apple M1, Reproducibility, ClearML and | |
Deci.ai integrations}}, | |
month = aug, | |
year = 2022, | |
publisher = {Zenodo}, | |
version = {v6.2}, | |
doi = {10.5281/zenodo.7002879}, | |
url = {https://doi.org/10.5281/zenodo.7002879} | |
} | |
``` | |