File size: 41,257 Bytes
339f0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
---
comments: true
description: Discover how to use YOLOv8 predict mode for various tasks. Learn about different inference sources like images, videos, and data formats.
keywords: Ultralytics, YOLOv8, predict mode, inference sources, prediction tasks, streaming mode, image processing, video processing, machine learning, AI
---

# Model Prediction with Ultralytics YOLO

<img width="1024" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics YOLO ecosystem and integrations">

## Introduction

In the world of machine learning and computer vision, the process of making sense out of visual data is called 'inference' or 'prediction'. Ultralytics YOLOv8 offers a powerful feature known as **predict mode** that is tailored for high-performance, real-time inference on a wide range of data sources.

<p align="center">
  <br>
  <iframe width="720" height="405" src="https://www.youtube.com/embed/QtsI0TnwDZs?si=ljesw75cMO2Eas14"
    title="YouTube video player" frameborder="0"
    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> How to Extract the Outputs from Ultralytics YOLOv8 Model for Custom Projects.
</p>

## Real-world Applications

|                                                            Manufacturing                                                            |                                                             Sports                                                              |                                                           Safety                                                            |
|:-----------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------:|
| ![Vehicle Spare Parts Detection](https://github.com/RizwanMunawar/ultralytics/assets/62513924/a0f802a8-0776-44cf-8f17-93974a4a28a1) | ![Football Player Detection](https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d320e1f-fc57-4d7f-a691-78ee579c3442) | ![People Fall Detection](https://github.com/RizwanMunawar/ultralytics/assets/62513924/86437c4a-3227-4eee-90ef-9efb697bdb43) |
|                                                    Vehicle Spare Parts Detection                                                    |                                                    Football Player Detection                                                    |                                                    People Fall Detection                                                    |

## Why Use Ultralytics YOLO for Inference?

Here's why you should consider YOLOv8's predict mode for your various inference needs:

- **Versatility:** Capable of making inferences on images, videos, and even live streams.
- **Performance:** Engineered for real-time, high-speed processing without sacrificing accuracy.
- **Ease of Use:** Intuitive Python and CLI interfaces for rapid deployment and testing.
- **Highly Customizable:** Various settings and parameters to tune the model's inference behavior according to your specific requirements.

### Key Features of Predict Mode

YOLOv8's predict mode is designed to be robust and versatile, featuring:

- **Multiple Data Source Compatibility:** Whether your data is in the form of individual images, a collection of images, video files, or real-time video streams, predict mode has you covered.
- **Streaming Mode:** Use the streaming feature to generate a memory-efficient generator of `Results` objects. Enable this by setting `stream=True` in the predictor's call method.
- **Batch Processing:** The ability to process multiple images or video frames in a single batch, further speeding up inference time.
- **Integration Friendly:** Easily integrate with existing data pipelines and other software components, thanks to its flexible API.

Ultralytics YOLO models return either a Python list of `Results` objects, or a memory-efficient Python generator of `Results` objects when `stream=True` is passed to the model during inference:

!!! example "Predict"

    === "Return a list with `stream=False`"
        ```python
        from ultralytics import YOLO

        # Load a model
        model = YOLO('yolov8n.pt')  # pretrained YOLOv8n model

        # Run batched inference on a list of images
        results = model(['im1.jpg', 'im2.jpg'])  # return a list of Results objects

        # Process results list
        for result in results:
            boxes = result.boxes  # Boxes object for bbox outputs
            masks = result.masks  # Masks object for segmentation masks outputs
            keypoints = result.keypoints  # Keypoints object for pose outputs
            probs = result.probs  # Probs object for classification outputs
        ```

    === "Return a generator with `stream=True`"
        ```python
        from ultralytics import YOLO

        # Load a model
        model = YOLO('yolov8n.pt')  # pretrained YOLOv8n model

        # Run batched inference on a list of images
        results = model(['im1.jpg', 'im2.jpg'], stream=True)  # return a generator of Results objects

        # Process results generator
        for result in results:
            boxes = result.boxes  # Boxes object for bbox outputs
            masks = result.masks  # Masks object for segmentation masks outputs
            keypoints = result.keypoints  # Keypoints object for pose outputs
            probs = result.probs  # Probs object for classification outputs
        ```

## Inference Sources

YOLOv8 can process different types of input sources for inference, as shown in the table below. The sources include static images, video streams, and various data formats. The table also indicates whether each source can be used in streaming mode with the argument `stream=True` ✅. Streaming mode is beneficial for processing videos or live streams as it creates a generator of results instead of loading all frames into memory.

!!! tip "Tip"

    Use `stream=True` for processing long videos or large datasets to efficiently manage memory. When `stream=False`, the results for all frames or data points are stored in memory, which can quickly add up and cause out-of-memory errors for large inputs. In contrast, `stream=True` utilizes a generator, which only keeps the results of the current frame or data point in memory, significantly reducing memory consumption and preventing out-of-memory issues.

| Source         | Argument                                   | Type            | Notes                                                                                       |
|----------------|--------------------------------------------|-----------------|---------------------------------------------------------------------------------------------|
| image          | `'image.jpg'`                              | `str` or `Path` | Single image file.                                                                          |
| URL            | `'https://ultralytics.com/images/bus.jpg'` | `str`           | URL to an image.                                                                            |
| screenshot     | `'screen'`                                 | `str`           | Capture a screenshot.                                                                       |
| PIL            | `Image.open('im.jpg')`                     | `PIL.Image`     | HWC format with RGB channels.                                                               |
| OpenCV         | `cv2.imread('im.jpg')`                     | `np.ndarray`    | HWC format with BGR channels `uint8 (0-255)`.                                               |
| numpy          | `np.zeros((640,1280,3))`                   | `np.ndarray`    | HWC format with BGR channels `uint8 (0-255)`.                                               |
| torch          | `torch.zeros(16,3,320,640)`                | `torch.Tensor`  | BCHW format with RGB channels `float32 (0.0-1.0)`.                                          |
| CSV            | `'sources.csv'`                            | `str` or `Path` | CSV file containing paths to images, videos, or directories.                                |
| video ✅        | `'video.mp4'`                              | `str` or `Path` | Video file in formats like MP4, AVI, etc.                                                   |
| directory ✅    | `'path/'`                                  | `str` or `Path` | Path to a directory containing images or videos.                                            |
| glob ✅         | `'path/*.jpg'`                             | `str`           | Glob pattern to match multiple files. Use the `*` character as a wildcard.                  |
| YouTube ✅      | `'https://youtu.be/LNwODJXcvt4'`           | `str`           | URL to a YouTube video.                                                                     |
| stream ✅       | `'rtsp://example.com/media.mp4'`           | `str`           | URL for streaming protocols such as RTSP, RTMP, TCP, or an IP address.                      |
| multi-stream ✅ | `'list.streams'`                           | `str` or `Path` | `*.streams` text file with one stream URL per row, i.e. 8 streams will run at batch-size 8. |

Below are code examples for using each source type:

!!! example "Prediction sources"

    === "image"
        Run inference on an image file.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define path to the image file
        source = 'path/to/image.jpg'

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "screenshot"
        Run inference on the current screen content as a screenshot.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define current screenshot as source
        source = 'screen'

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "URL"
        Run inference on an image or video hosted remotely via URL.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define remote image or video URL
        source = 'https://ultralytics.com/images/bus.jpg'

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "PIL"
        Run inference on an image opened with Python Imaging Library (PIL).
        ```python
        from PIL import Image
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Open an image using PIL
        source = Image.open('path/to/image.jpg')

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "OpenCV"
        Run inference on an image read with OpenCV.
        ```python
        import cv2
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Read an image using OpenCV
        source = cv2.imread('path/to/image.jpg')

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "numpy"
        Run inference on an image represented as a numpy array.
        ```python
        import numpy as np
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Create a random numpy array of HWC shape (640, 640, 3) with values in range [0, 255] and type uint8
        source = np.random.randint(low=0, high=255, size=(640, 640, 3), dtype='uint8')

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "torch"
        Run inference on an image represented as a PyTorch tensor.
        ```python
        import torch
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Create a random torch tensor of BCHW shape (1, 3, 640, 640) with values in range [0, 1] and type float32
        source = torch.rand(1, 3, 640, 640, dtype=torch.float32)

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "CSV"
        Run inference on a collection of images, URLs, videos and directories listed in a CSV file.
        ```python
        import torch
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define a path to a CSV file with images, URLs, videos and directories
        source = 'path/to/file.csv'

        # Run inference on the source
        results = model(source)  # list of Results objects
        ```

    === "video"
        Run inference on a video file. By using `stream=True`, you can create a generator of Results objects to reduce memory usage.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define path to video file
        source = 'path/to/video.mp4'

        # Run inference on the source
        results = model(source, stream=True)  # generator of Results objects
        ```

    === "directory"
        Run inference on all images and videos in a directory. To also capture images and videos in subdirectories use a glob pattern, i.e. `path/to/dir/**/*`.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define path to directory containing images and videos for inference
        source = 'path/to/dir'

        # Run inference on the source
        results = model(source, stream=True)  # generator of Results objects
        ```

    === "glob"
        Run inference on all images and videos that match a glob expression with `*` characters.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define a glob search for all JPG files in a directory
        source = 'path/to/dir/*.jpg'

        # OR define a recursive glob search for all JPG files including subdirectories
        source = 'path/to/dir/**/*.jpg'

        # Run inference on the source
        results = model(source, stream=True)  # generator of Results objects
        ```

    === "YouTube"
        Run inference on a YouTube video. By using `stream=True`, you can create a generator of Results objects to reduce memory usage for long videos.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Define source as YouTube video URL
        source = 'https://youtu.be/LNwODJXcvt4'

        # Run inference on the source
        results = model(source, stream=True)  # generator of Results objects
        ```

    === "Streams"
        Run inference on remote streaming sources using RTSP, RTMP, TCP and IP address protocols. If multiple streams are provided in a `*.streams` text file then batched inference will run, i.e. 8 streams will run at batch-size 8, otherwise single streams will run at batch-size 1.
        ```python
        from ultralytics import YOLO

        # Load a pretrained YOLOv8n model
        model = YOLO('yolov8n.pt')

        # Single stream with batch-size 1 inference
        source = 'rtsp://example.com/media.mp4'  # RTSP, RTMP, TCP or IP streaming address

        # Multiple streams with batched inference (i.e. batch-size 8 for 8 streams)
        source = 'path/to/list.streams'  # *.streams text file with one streaming address per row

        # Run inference on the source
        results = model(source, stream=True)  # generator of Results objects
        ```

## Inference Arguments

`model.predict()` accepts multiple arguments that can be passed at inference time to override defaults:

!!! example

    ```python
    from ultralytics import YOLO

    # Load a pretrained YOLOv8n model
    model = YOLO('yolov8n.pt')

    # Run inference on 'bus.jpg' with arguments
    model.predict('bus.jpg', save=True, imgsz=320, conf=0.5)
    ```

All supported arguments:

| Name            | Type           | Default                | Description                                                                    |
|-----------------|----------------|------------------------|--------------------------------------------------------------------------------|
| `source`        | `str`          | `'ultralytics/assets'` | source directory for images or videos                                          |
| `conf`          | `float`        | `0.25`                 | object confidence threshold for detection                                      |
| `iou`           | `float`        | `0.7`                  | intersection over union (IoU) threshold for NMS                                |
| `imgsz`         | `int or tuple` | `640`                  | image size as scalar or (h, w) list, i.e. (640, 480)                           |
| `half`          | `bool`         | `False`                | use half precision (FP16)                                                      |
| `device`        | `None or str`  | `None`                 | device to run on, i.e. cuda device=0/1/2/3 or device=cpu                       |
| `show`          | `bool`         | `False`                | show results if possible                                                       |
| `save`          | `bool`         | `False`                | save images with results                                                       |
| `save_txt`      | `bool`         | `False`                | save results as .txt file                                                      |
| `save_conf`     | `bool`         | `False`                | save results with confidence scores                                            |
| `save_crop`     | `bool`         | `False`                | save cropped images with results                                               |
| `hide_labels`   | `bool`         | `False`                | hide labels                                                                    |
| `hide_conf`     | `bool`         | `False`                | hide confidence scores                                                         |
| `max_det`       | `int`          | `300`                  | maximum number of detections per image                                         |
| `vid_stride`    | `bool`         | `False`                | video frame-rate stride                                                        |
| `stream_buffer` | `bool`         | `False`                | buffer all streaming frames (True) or return the most recent frame (False)     |
| `line_width`    | `None or int`  | `None`                 | The line width of the bounding boxes. If None, it is scaled to the image size. |
| `visualize`     | `bool`         | `False`                | visualize model features                                                       |
| `augment`       | `bool`         | `False`                | apply image augmentation to prediction sources                                 |
| `agnostic_nms`  | `bool`         | `False`                | class-agnostic NMS                                                             |
| `retina_masks`  | `bool`         | `False`                | use high-resolution segmentation masks                                         |
| `classes`       | `None or list` | `None`                 | filter results by class, i.e. classes=0, or classes=[0,2,3]                    |
| `boxes`         | `bool`         | `True`                 | Show boxes in segmentation predictions                                         |

## Image and Video Formats

YOLOv8 supports various image and video formats, as specified in [data/utils.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/utils.py). See the tables below for the valid suffixes and example predict commands.

### Images

The below table contains valid Ultralytics image formats.

| Image Suffixes | Example Predict Command          | Reference                                                                     |
|----------------|----------------------------------|-------------------------------------------------------------------------------|
| .bmp           | `yolo predict source=image.bmp`  | [Microsoft BMP File Format](https://en.wikipedia.org/wiki/BMP_file_format)    |
| .dng           | `yolo predict source=image.dng`  | [Adobe DNG](https://www.adobe.com/products/photoshop/extend.displayTab2.html) |
| .jpeg          | `yolo predict source=image.jpeg` | [JPEG](https://en.wikipedia.org/wiki/JPEG)                                    |
| .jpg           | `yolo predict source=image.jpg`  | [JPEG](https://en.wikipedia.org/wiki/JPEG)                                    |
| .mpo           | `yolo predict source=image.mpo`  | [Multi Picture Object](https://fileinfo.com/extension/mpo)                    |
| .png           | `yolo predict source=image.png`  | [Portable Network Graphics](https://en.wikipedia.org/wiki/PNG)                |
| .tif           | `yolo predict source=image.tif`  | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF)                   |
| .tiff          | `yolo predict source=image.tiff` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF)                   |
| .webp          | `yolo predict source=image.webp` | [WebP](https://en.wikipedia.org/wiki/WebP)                                    |
| .pfm           | `yolo predict source=image.pfm`  | [Portable FloatMap](https://en.wikipedia.org/wiki/Netpbm#File_formats)        |

### Videos

The below table contains valid Ultralytics video formats.

| Video Suffixes | Example Predict Command          | Reference                                                                        |
|----------------|----------------------------------|----------------------------------------------------------------------------------|
| .asf           | `yolo predict source=video.asf`  | [Advanced Systems Format](https://en.wikipedia.org/wiki/Advanced_Systems_Format) |
| .avi           | `yolo predict source=video.avi`  | [Audio Video Interleave](https://en.wikipedia.org/wiki/Audio_Video_Interleave)   |
| .gif           | `yolo predict source=video.gif`  | [Graphics Interchange Format](https://en.wikipedia.org/wiki/GIF)                 |
| .m4v           | `yolo predict source=video.m4v`  | [MPEG-4 Part 14](https://en.wikipedia.org/wiki/M4V)                              |
| .mkv           | `yolo predict source=video.mkv`  | [Matroska](https://en.wikipedia.org/wiki/Matroska)                               |
| .mov           | `yolo predict source=video.mov`  | [QuickTime File Format](https://en.wikipedia.org/wiki/QuickTime_File_Format)     |
| .mp4           | `yolo predict source=video.mp4`  | [MPEG-4 Part 14 - Wikipedia](https://en.wikipedia.org/wiki/MPEG-4_Part_14)       |
| .mpeg          | `yolo predict source=video.mpeg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1)                            |
| .mpg           | `yolo predict source=video.mpg`  | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1)                            |
| .ts            | `yolo predict source=video.ts`   | [MPEG Transport Stream](https://en.wikipedia.org/wiki/MPEG_transport_stream)     |
| .wmv           | `yolo predict source=video.wmv`  | [Windows Media Video](https://en.wikipedia.org/wiki/Windows_Media_Video)         |
| .webm          | `yolo predict source=video.webm` | [WebM Project](https://en.wikipedia.org/wiki/WebM)                               |

## Working with Results

All Ultralytics `predict()` calls will return a list of `Results` objects:

!!! example "Results"

    ```python
    from ultralytics import YOLO

    # Load a pretrained YOLOv8n model
    model = YOLO('yolov8n.pt')

    # Run inference on an image
    results = model('bus.jpg')  # list of 1 Results object
    results = model(['bus.jpg', 'zidane.jpg'])  # list of 2 Results objects
    ```

`Results` objects have the following attributes:

| Attribute    | Type                  | Description                                                                              |
|--------------|-----------------------|------------------------------------------------------------------------------------------|
| `orig_img`   | `numpy.ndarray`       | The original image as a numpy array.                                                     |
| `orig_shape` | `tuple`               | The original image shape in (height, width) format.                                      |
| `boxes`      | `Boxes, optional`     | A Boxes object containing the detection bounding boxes.                                  |
| `masks`      | `Masks, optional`     | A Masks object containing the detection masks.                                           |
| `probs`      | `Probs, optional`     | A Probs object containing probabilities of each class for classification task.           |
| `keypoints`  | `Keypoints, optional` | A Keypoints object containing detected keypoints for each object.                        |
| `speed`      | `dict`                | A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image. |
| `names`      | `dict`                | A dictionary of class names.                                                             |
| `path`       | `str`                 | The path to the image file.                                                              |

`Results` objects have the following methods:

| Method          | Return Type     | Description                                                                         |
|-----------------|-----------------|-------------------------------------------------------------------------------------|
| `__getitem__()` | `Results`       | Return a Results object for the specified index.                                    |
| `__len__()`     | `int`           | Return the number of detections in the Results object.                              |
| `update()`      | `None`          | Update the boxes, masks, and probs attributes of the Results object.                |
| `cpu()`         | `Results`       | Return a copy of the Results object with all tensors on CPU memory.                 |
| `numpy()`       | `Results`       | Return a copy of the Results object with all tensors as numpy arrays.               |
| `cuda()`        | `Results`       | Return a copy of the Results object with all tensors on GPU memory.                 |
| `to()`          | `Results`       | Return a copy of the Results object with tensors on the specified device and dtype. |
| `new()`         | `Results`       | Return a new Results object with the same image, path, and names.                   |
| `keys()`        | `List[str]`     | Return a list of non-empty attribute names.                                         |
| `plot()`        | `numpy.ndarray` | Plots the detection results. Returns a numpy array of the annotated image.          |
| `verbose()`     | `str`           | Return log string for each task.                                                    |
| `save_txt()`    | `None`          | Save predictions into a txt file.                                                   |
| `save_crop()`   | `None`          | Save cropped predictions to `save_dir/cls/file_name.jpg`.                           |
| `tojson()`      | `None`          | Convert the object to JSON format.                                                  |

For more details see the `Results` class [documentation](../reference/engine/results.md).

### Boxes

`Boxes` object can be used to index, manipulate, and convert bounding boxes to different formats.

!!! example "Boxes"

    ```python
    from ultralytics import YOLO

    # Load a pretrained YOLOv8n model
    model = YOLO('yolov8n.pt')

    # Run inference on an image
    results = model('bus.jpg')  # results list

    # View results
    for r in results:
        print(r.boxes)  # print the Boxes object containing the detection bounding boxes
    ```

Here is a table for the `Boxes` class methods and properties, including their name, type, and description:

| Name      | Type                      | Description                                                        |
|-----------|---------------------------|--------------------------------------------------------------------|
| `cpu()`   | Method                    | Move the object to CPU memory.                                     |
| `numpy()` | Method                    | Convert the object to a numpy array.                               |
| `cuda()`  | Method                    | Move the object to CUDA memory.                                    |
| `to()`    | Method                    | Move the object to the specified device.                           |
| `xyxy`    | Property (`torch.Tensor`) | Return the boxes in xyxy format.                                   |
| `conf`    | Property (`torch.Tensor`) | Return the confidence values of the boxes.                         |
| `cls`     | Property (`torch.Tensor`) | Return the class values of the boxes.                              |
| `id`      | Property (`torch.Tensor`) | Return the track IDs of the boxes (if available).                  |
| `xywh`    | Property (`torch.Tensor`) | Return the boxes in xywh format.                                   |
| `xyxyn`   | Property (`torch.Tensor`) | Return the boxes in xyxy format normalized by original image size. |
| `xywhn`   | Property (`torch.Tensor`) | Return the boxes in xywh format normalized by original image size. |

For more details see the `Boxes` class [documentation](../reference/engine/results.md).

### Masks

`Masks` object can be used index, manipulate and convert masks to segments.

!!! example "Masks"

    ```python
    from ultralytics import YOLO

    # Load a pretrained YOLOv8n-seg Segment model
    model = YOLO('yolov8n-seg.pt')

    # Run inference on an image
    results = model('bus.jpg')  # results list

    # View results
    for r in results:
        print(r.masks)  # print the Masks object containing the detected instance masks
    ```

Here is a table for the `Masks` class methods and properties, including their name, type, and description:

| Name      | Type                      | Description                                                     |
|-----------|---------------------------|-----------------------------------------------------------------|
| `cpu()`   | Method                    | Returns the masks tensor on CPU memory.                         |
| `numpy()` | Method                    | Returns the masks tensor as a numpy array.                      |
| `cuda()`  | Method                    | Returns the masks tensor on GPU memory.                         |
| `to()`    | Method                    | Returns the masks tensor with the specified device and dtype.   |
| `xyn`     | Property (`torch.Tensor`) | A list of normalized segments represented as tensors.           |
| `xy`      | Property (`torch.Tensor`) | A list of segments in pixel coordinates represented as tensors. |

For more details see the `Masks` class [documentation](../reference/engine/results.md).

### Keypoints

`Keypoints` object can be used index, manipulate and normalize coordinates.

!!! example "Keypoints"

    ```python
    from ultralytics import YOLO

    # Load a pretrained YOLOv8n-pose Pose model
    model = YOLO('yolov8n-pose.pt')

    # Run inference on an image
    results = model('bus.jpg')  # results list

    # View results
    for r in results:
        print(r.keypoints)  # print the Keypoints object containing the detected keypoints
    ```

Here is a table for the `Keypoints` class methods and properties, including their name, type, and description:

| Name      | Type                      | Description                                                       |
|-----------|---------------------------|-------------------------------------------------------------------|
| `cpu()`   | Method                    | Returns the keypoints tensor on CPU memory.                       |
| `numpy()` | Method                    | Returns the keypoints tensor as a numpy array.                    |
| `cuda()`  | Method                    | Returns the keypoints tensor on GPU memory.                       |
| `to()`    | Method                    | Returns the keypoints tensor with the specified device and dtype. |
| `xyn`     | Property (`torch.Tensor`) | A list of normalized keypoints represented as tensors.            |
| `xy`      | Property (`torch.Tensor`) | A list of keypoints in pixel coordinates represented as tensors.  |
| `conf`    | Property (`torch.Tensor`) | Returns confidence values of keypoints if available, else None.   |

For more details see the `Keypoints` class [documentation](../reference/engine/results.md).

### Probs

`Probs` object can be used index, get `top1` and `top5` indices and scores of classification.

!!! example "Probs"

    ```python
    from ultralytics import YOLO

    # Load a pretrained YOLOv8n-cls Classify model
    model = YOLO('yolov8n-cls.pt')

    # Run inference on an image
    results = model('bus.jpg')  # results list

    # View results
    for r in results:
        print(r.probs)  # print the Probs object containing the detected class probabilities
    ```

Here's a table summarizing the methods and properties for the `Probs` class:

| Name       | Type                      | Description                                                             |
|------------|---------------------------|-------------------------------------------------------------------------|
| `cpu()`    | Method                    | Returns a copy of the probs tensor on CPU memory.                       |
| `numpy()`  | Method                    | Returns a copy of the probs tensor as a numpy array.                    |
| `cuda()`   | Method                    | Returns a copy of the probs tensor on GPU memory.                       |
| `to()`     | Method                    | Returns a copy of the probs tensor with the specified device and dtype. |
| `top1`     | Property (`int`)          | Index of the top 1 class.                                               |
| `top5`     | Property (`list[int]`)    | Indices of the top 5 classes.                                           |
| `top1conf` | Property (`torch.Tensor`) | Confidence of the top 1 class.                                          |
| `top5conf` | Property (`torch.Tensor`) | Confidences of the top 5 classes.                                       |

For more details see the `Probs` class [documentation](../reference/engine/results.md).

## Plotting Results

You can use the `plot()` method of a `Result` objects to visualize predictions. It plots all prediction types (boxes, masks, keypoints, probabilities, etc.) contained in the `Results` object onto a numpy array that can then be shown or saved.

!!! example "Plotting"

    ```python
    from PIL import Image
    from ultralytics import YOLO

    # Load a pretrained YOLOv8n model
    model = YOLO('yolov8n.pt')

    # Run inference on 'bus.jpg'
    results = model('bus.jpg')  # results list

    # Show the results
    for r in results:
        im_array = r.plot()  # plot a BGR numpy array of predictions
        im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
        im.show()  # show image
        im.save('results.jpg')  # save image
    ```

    The `plot()` method supports the following arguments:

    | Argument     | Type            | Description                                                                    | Default       |
    |--------------|-----------------|--------------------------------------------------------------------------------|---------------|
    | `conf`       | `bool`          | Whether to plot the detection confidence score.                                | `True`        |
    | `line_width` | `float`         | The line width of the bounding boxes. If None, it is scaled to the image size. | `None`        |
    | `font_size`  | `float`         | The font size of the text. If None, it is scaled to the image size.            | `None`        |
    | `font`       | `str`           | The font to use for the text.                                                  | `'Arial.ttf'` |
    | `pil`        | `bool`          | Whether to return the image as a PIL Image.                                    | `False`       |
    | `img`        | `numpy.ndarray` | Plot to another image. if not, plot to original image.                         | `None`        |
    | `im_gpu`     | `torch.Tensor`  | Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting. | `None`        |
    | `kpt_radius` | `int`           | Radius of the drawn keypoints. Default is 5.                                   | `5`           |
    | `kpt_line`   | `bool`          | Whether to draw lines connecting keypoints.                                    | `True`        |
    | `labels`     | `bool`          | Whether to plot the label of bounding boxes.                                   | `True`        |
    | `boxes`      | `bool`          | Whether to plot the bounding boxes.                                            | `True`        |
    | `masks`      | `bool`          | Whether to plot the masks.                                                     | `True`        |
    | `probs`      | `bool`          | Whether to plot classification probability                                     | `True`        |

## Thread-Safe Inference

Ensuring thread safety during inference is crucial when you are running multiple YOLO models in parallel across different threads. Thread-safe inference guarantees that each thread's predictions are isolated and do not interfere with one another, avoiding race conditions and ensuring consistent and reliable outputs.

When using YOLO models in a multi-threaded application, it's important to instantiate separate model objects for each thread or employ thread-local storage to prevent conflicts:

!!! example "Thread-Safe Inference"

    Instantiate a single model inside each thread for thread-safe inference:
    ```python
    from ultralytics import YOLO
    from threading import Thread

    def thread_safe_predict(image_path):
        # Instantiate a new model inside the thread
        local_model = YOLO("yolov8n.pt")
        results = local_model.predict(image_path)
        # Process results


    # Starting threads that each have their own model instance
    Thread(target=thread_safe_predict, args=("image1.jpg",)).start()
    Thread(target=thread_safe_predict, args=("image2.jpg",)).start()
    ```

For an in-depth look at thread-safe inference with YOLO models and step-by-step instructions, please refer to our [YOLO Thread-Safe Inference Guide](../guides/yolo-thread-safe-inference.md). This guide will provide you with all the necessary information to avoid common pitfalls and ensure that your multi-threaded inference runs smoothly.

## Streaming Source `for`-loop

Here's a Python script using OpenCV (`cv2`) and YOLOv8 to run inference on video frames. This script assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`).

!!! example "Streaming for-loop"

    ```python
    import cv2
    from ultralytics import YOLO

    # Load the YOLOv8 model
    model = YOLO('yolov8n.pt')

    # Open the video file
    video_path = "path/to/your/video/file.mp4"
    cap = cv2.VideoCapture(video_path)

    # Loop through the video frames
    while cap.isOpened():
        # Read a frame from the video
        success, frame = cap.read()

        if success:
            # Run YOLOv8 inference on the frame
            results = model(frame)

            # Visualize the results on the frame
            annotated_frame = results[0].plot()

            # Display the annotated frame
            cv2.imshow("YOLOv8 Inference", annotated_frame)

            # Break the loop if 'q' is pressed
            if cv2.waitKey(1) & 0xFF == ord("q"):
                break
        else:
            # Break the loop if the end of the video is reached
            break

    # Release the video capture object and close the display window
    cap.release()
    cv2.destroyAllWindows()
    ```

This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.