File size: 10,496 Bytes
339f0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
comments: true
description: Boost your Python projects with object detection, segmentation and classification using YOLOv8. Explore how to load, train, validate, predict, export, track and benchmark models with ease.
keywords: YOLOv8, Ultralytics, Python, object detection, segmentation, classification, model training, validation, prediction, model export, benchmark, real-time tracking
---

# Python Usage

Welcome to the YOLOv8 Python Usage documentation! This guide is designed to help you seamlessly integrate YOLOv8 into your Python projects for object detection, segmentation, and classification. Here, you'll learn how to load and use pretrained models, train new models, and perform predictions on images. The easy-to-use Python interface is a valuable resource for anyone looking to incorporate YOLOv8 into their Python projects, allowing you to quickly implement advanced object detection capabilities. Let's get started!

For example, users can load a model, train it, evaluate its performance on a validation set, and even export it to ONNX format with just a few lines of code.

!!! example "Python"

    ```python
    from ultralytics import YOLO

    # Create a new YOLO model from scratch
    model = YOLO('yolov8n.yaml')

    # Load a pretrained YOLO model (recommended for training)
    model = YOLO('yolov8n.pt')

    # Train the model using the 'coco128.yaml' dataset for 3 epochs
    results = model.train(data='coco128.yaml', epochs=3)

    # Evaluate the model's performance on the validation set
    results = model.val()

    # Perform object detection on an image using the model
    results = model('https://ultralytics.com/images/bus.jpg')

    # Export the model to ONNX format
    success = model.export(format='onnx')
    ```

## [Train](../modes/train.md)

Train mode is used for training a YOLOv8 model on a custom dataset. In this mode, the model is trained using the specified dataset and hyperparameters. The training process involves optimizing the model's parameters so that it can accurately predict the classes and locations of objects in an image.

!!! example "Train"

    === "From pretrained(recommended)"
        ```python
        from ultralytics import YOLO

        model = YOLO('yolov8n.pt') # pass any model type
        results = model.train(epochs=5)
        ```

    === "From scratch"
        ```python
        from ultralytics import YOLO

        model = YOLO('yolov8n.yaml')
        results = model.train(data='coco128.yaml', epochs=5)
        ```

    === "Resume"
        ```python
        model = YOLO("last.pt")
        results = model.train(resume=True)
        ```

[Train Examples](../modes/train.md){ .md-button .md-button--primary}

## [Val](../modes/val.md)

Val mode is used for validating a YOLOv8 model after it has been trained. In this mode, the model is evaluated on a validation set to measure its accuracy and generalization performance. This mode can be used to tune the hyperparameters of the model to improve its performance.

!!! example "Val"

    === "Val after training"
        ```python
          from ultralytics import YOLO

          model = YOLO('yolov8n.yaml')
          model.train(data='coco128.yaml', epochs=5)
          model.val()  # It'll automatically evaluate the data you trained.
        ```

    === "Val independently"
        ```python
          from ultralytics import YOLO

          model = YOLO("model.pt")
          # It'll use the data YAML file in model.pt if you don't set data.
          model.val()
          # or you can set the data you want to val
          model.val(data='coco128.yaml')
        ```

[Val Examples](../modes/val.md){ .md-button .md-button--primary}

## [Predict](../modes/predict.md)

Predict mode is used for making predictions using a trained YOLOv8 model on new images or videos. In this mode, the model is loaded from a checkpoint file, and the user can provide images or videos to perform inference. The model predicts the classes and locations of objects in the input images or videos.

!!! example "Predict"

    === "From source"
        ```python
        from ultralytics import YOLO
        from PIL import Image
        import cv2

        model = YOLO("model.pt")
        # accepts all formats - image/dir/Path/URL/video/PIL/ndarray. 0 for webcam
        results = model.predict(source="0")
        results = model.predict(source="folder", show=True) # Display preds. Accepts all YOLO predict arguments

        # from PIL
        im1 = Image.open("bus.jpg")
        results = model.predict(source=im1, save=True)  # save plotted images

        # from ndarray
        im2 = cv2.imread("bus.jpg")
        results = model.predict(source=im2, save=True, save_txt=True)  # save predictions as labels

        # from list of PIL/ndarray
        results = model.predict(source=[im1, im2])
        ```

    === "Results usage"
        ```python
        # results would be a list of Results object including all the predictions by default
        # but be careful as it could occupy a lot memory when there're many images,
        # especially the task is segmentation.
        # 1. return as a list
        results = model.predict(source="folder")

        # results would be a generator which is more friendly to memory by setting stream=True
        # 2. return as a generator
        results = model.predict(source=0, stream=True)

        for result in results:
            # Detection
            result.boxes.xyxy   # box with xyxy format, (N, 4)
            result.boxes.xywh   # box with xywh format, (N, 4)
            result.boxes.xyxyn  # box with xyxy format but normalized, (N, 4)
            result.boxes.xywhn  # box with xywh format but normalized, (N, 4)
            result.boxes.conf   # confidence score, (N, 1)
            result.boxes.cls    # cls, (N, 1)

            # Segmentation
            result.masks.data      # masks, (N, H, W)
            result.masks.xy        # x,y segments (pixels), List[segment] * N
            result.masks.xyn       # x,y segments (normalized), List[segment] * N

            # Classification
            result.probs     # cls prob, (num_class, )

        # Each result is composed of torch.Tensor by default,
        # in which you can easily use following functionality:
        result = result.cuda()
        result = result.cpu()
        result = result.to("cpu")
        result = result.numpy()
        ```

[Predict Examples](../modes/predict.md){ .md-button .md-button--primary}

## [Export](../modes/export.md)

Export mode is used for exporting a YOLOv8 model to a format that can be used for deployment. In this mode, the model is converted to a format that can be used by other software applications or hardware devices. This mode is useful when deploying the model to production environments.

!!! example "Export"

    === "Export to ONNX"

        Export an official YOLOv8n model to ONNX with dynamic batch-size and image-size.
        ```python
          from ultralytics import YOLO

          model = YOLO('yolov8n.pt')
          model.export(format='onnx', dynamic=True)
        ```

    === "Export to TensorRT"

        Export an official YOLOv8n model to TensorRT on `device=0` for acceleration on CUDA devices.
        ```python
          from ultralytics import YOLO

          model = YOLO('yolov8n.pt')
          model.export(format='onnx', device=0)
        ```

[Export Examples](../modes/export.md){ .md-button .md-button--primary}

## [Track](../modes/track.md)

Track mode is used for tracking objects in real-time using a YOLOv8 model. In this mode, the model is loaded from a checkpoint file, and the user can provide a live video stream to perform real-time object tracking. This mode is useful for applications such as surveillance systems or self-driving cars.

!!! example "Track"

    === "Python"

        ```python
        from ultralytics import YOLO

        # Load a model
        model = YOLO('yolov8n.pt')  # load an official detection model
        model = YOLO('yolov8n-seg.pt')  # load an official segmentation model
        model = YOLO('path/to/best.pt')  # load a custom model

        # Track with the model
        results = model.track(source="https://youtu.be/LNwODJXcvt4", show=True)
        results = model.track(source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml")
        ```

[Track Examples](../modes/track.md){ .md-button .md-button--primary}

## [Benchmark](../modes/benchmark.md)

Benchmark mode is used to profile the speed and accuracy of various export formats for YOLOv8. The benchmarks provide information on the size of the exported format, its `mAP50-95` metrics (for object detection and segmentation)
or `accuracy_top5` metrics (for classification), and the inference time in milliseconds per image across various export formats like ONNX, OpenVINO, TensorRT and others. This information can help users choose the optimal export format for their specific use case based on their requirements for speed and accuracy.

!!! example "Benchmark"

    === "Python"

        Benchmark an official YOLOv8n model across all export formats.
        ```python
        from ultralytics.utils.benchmarks import benchmark

        # Benchmark
        benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0)
        ```

[Benchmark Examples](../modes/benchmark.md){ .md-button .md-button--primary}

## Using Trainers

`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits from `BaseTrainer`.

!!! tip "Detection Trainer Example"

        ```python
        from ultralytics.models.yolo import DetectionTrainer, DetectionValidator, DetectionPredictor

        # trainer
        trainer = DetectionTrainer(overrides={})
        trainer.train()
        trained_model = trainer.best

        # Validator
        val = DetectionValidator(args=...)
        val(model=trained_model)

        # predictor
        pred = DetectionPredictor(overrides={})
        pred(source=SOURCE, model=trained_model)

        # resume from last weight
        overrides["resume"] = trainer.last
        trainer = detect.DetectionTrainer(overrides=overrides)
        ```

You can easily customize Trainers to support custom tasks or explore R&D ideas. Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization Section.

[Customization tutorials](engine.md){ .md-button .md-button--primary}