Spaces:
Sleeping
Sleeping
File size: 11,592 Bytes
339f0eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
#include "inference.h"
#include <regex>
#define benchmark
DCSP_CORE::DCSP_CORE() {
}
DCSP_CORE::~DCSP_CORE() {
delete session;
}
#ifdef USE_CUDA
namespace Ort
{
template<>
struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
}
#endif
template<typename T>
char *BlobFromImage(cv::Mat &iImg, T &iBlob) {
int channels = iImg.channels();
int imgHeight = iImg.rows;
int imgWidth = iImg.cols;
for (int c = 0; c < channels; c++) {
for (int h = 0; h < imgHeight; h++) {
for (int w = 0; w < imgWidth; w++) {
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
(iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
}
}
}
return RET_OK;
}
char *PostProcess(cv::Mat &iImg, std::vector<int> iImgSize, cv::Mat &oImg) {
cv::Mat img = iImg.clone();
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
if (img.channels() == 1) {
cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
}
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
return RET_OK;
}
char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) {
char *Ret = RET_OK;
std::regex pattern("[\u4e00-\u9fa5]");
bool result = std::regex_search(iParams.ModelPath, pattern);
if (result) {
Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
std::cout << Ret << std::endl;
return Ret;
}
try {
rectConfidenceThreshold = iParams.RectConfidenceThreshold;
iouThreshold = iParams.iouThreshold;
imgSize = iParams.imgSize;
modelType = iParams.ModelType;
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
Ort::SessionOptions sessionOption;
if (iParams.CudaEnable) {
cudaEnable = iParams.CudaEnable;
OrtCUDAProviderOptions cudaOption;
cudaOption.device_id = 0;
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
}
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
#ifdef _WIN32
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
wide_cstr[ModelPathSize] = L'\0';
const wchar_t* modelPath = wide_cstr;
#else
const char *modelPath = iParams.ModelPath.c_str();
#endif // _WIN32
session = new Ort::Session(env, modelPath, sessionOption);
Ort::AllocatorWithDefaultOptions allocator;
size_t inputNodesNum = session->GetInputCount();
for (size_t i = 0; i < inputNodesNum; i++) {
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
char *temp_buf = new char[50];
strcpy(temp_buf, input_node_name.get());
inputNodeNames.push_back(temp_buf);
}
size_t OutputNodesNum = session->GetOutputCount();
for (size_t i = 0; i < OutputNodesNum; i++) {
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
char *temp_buf = new char[10];
strcpy(temp_buf, output_node_name.get());
outputNodeNames.push_back(temp_buf);
}
options = Ort::RunOptions{nullptr};
WarmUpSession();
return RET_OK;
}
catch (const std::exception &e) {
const char *str1 = "[DCSP_ONNX]:";
const char *str2 = e.what();
std::string result = std::string(str1) + std::string(str2);
char *merged = new char[result.length() + 1];
std::strcpy(merged, result.c_str());
std::cout << merged << std::endl;
delete[] merged;
return "[DCSP_ONNX]:Create session failed.";
}
}
char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult) {
#ifdef benchmark
clock_t starttime_1 = clock();
#endif // benchmark
char *Ret = RET_OK;
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4) {
float *blob = new float[processedImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)};
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
} else {
#ifdef USE_CUDA
half* blob = new half[processedImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
#endif
}
return Ret;
}
template<typename N>
char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
std::vector<DCSP_RESULT> &oResult) {
Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
inputNodeDims.data(), inputNodeDims.size());
#ifdef benchmark
clock_t starttime_2 = clock();
#endif // benchmark
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
outputNodeNames.size());
#ifdef benchmark
clock_t starttime_3 = clock();
#endif // benchmark
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
delete blob;
switch (modelType) {
case 1://V8_ORIGIN_FP32
case 4://V8_ORIGIN_FP16
{
int strideNum = outputNodeDims[2];
int signalResultNum = outputNodeDims[1];
std::vector<int> class_ids;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
cv::Mat rawData;
if (modelType == 1) {
// FP32
rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
} else {
// FP16
rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
rawData.convertTo(rawData, CV_32F);
}
rawData = rawData.t();
float *data = (float *) rawData.data;
float x_factor = iImg.cols / 640.;
float y_factor = iImg.rows / 640.;
for (int i = 0; i < strideNum; ++i) {
float *classesScores = data + 4;
cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
cv::Point class_id;
double maxClassScore;
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
if (maxClassScore > rectConfidenceThreshold) {
confidences.push_back(maxClassScore);
class_ids.push_back(class_id.x);
float x = data[0];
float y = data[1];
float w = data[2];
float h = data[3];
int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.emplace_back(left, top, width, height);
}
data += signalResultNum;
}
std::vector<int> nmsResult;
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
for (int i = 0; i < nmsResult.size(); ++i) {
int idx = nmsResult[i];
DCSP_RESULT result;
result.classId = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
oResult.push_back(result);
}
#ifdef benchmark
clock_t starttime_4 = clock();
double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
if (cudaEnable) {
std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time
<< "ms inference, " << post_process_time << "ms post-process." << std::endl;
} else {
std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time
<< "ms inference, " << post_process_time << "ms post-process." << std::endl;
}
#endif // benchmark
break;
}
}
return RET_OK;
}
char *DCSP_CORE::WarmUpSession() {
clock_t starttime_1 = clock();
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4) {
float *blob = new float[iImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)};
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
outputNodeNames.size());
delete[] blob;
clock_t starttime_4 = clock();
double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
if (cudaEnable) {
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
} else {
#ifdef USE_CUDA
half* blob = new half[iImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
delete[] blob;
clock_t starttime_4 = clock();
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
if (cudaEnable)
{
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
#endif
}
return RET_OK;
}
|