Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import pytest | |
import torch | |
from ultralytics import YOLO | |
from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks | |
CUDA_IS_AVAILABLE = checks.cuda_is_available() | |
CUDA_DEVICE_COUNT = checks.cuda_device_count() | |
MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path | |
DATA = 'coco8.yaml' | |
BUS = ASSETS / 'bus.jpg' | |
def test_checks(): | |
"""Validate CUDA settings against torch CUDA functions.""" | |
assert torch.cuda.is_available() == CUDA_IS_AVAILABLE | |
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT | |
def test_train(): | |
"""Test model training on a minimal dataset.""" | |
device = 0 if CUDA_DEVICE_COUNT == 1 else [0, 1] | |
YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, device=device) # requires imgsz>=64 | |
def test_predict_multiple_devices(): | |
"""Validate model prediction on multiple devices.""" | |
model = YOLO('yolov8n.pt') | |
model = model.cpu() | |
assert str(model.device) == 'cpu' | |
_ = model(BUS) # CPU inference | |
assert str(model.device) == 'cpu' | |
model = model.to('cuda:0') | |
assert str(model.device) == 'cuda:0' | |
_ = model(BUS) # CUDA inference | |
assert str(model.device) == 'cuda:0' | |
model = model.cpu() | |
assert str(model.device) == 'cpu' | |
_ = model(BUS) # CPU inference | |
assert str(model.device) == 'cpu' | |
model = model.cuda() | |
assert str(model.device) == 'cuda:0' | |
_ = model(BUS) # CUDA inference | |
assert str(model.device) == 'cuda:0' | |
def test_autobatch(): | |
"""Check batch size for YOLO model using autobatch.""" | |
from ultralytics.utils.autobatch import check_train_batch_size | |
check_train_batch_size(YOLO(MODEL).model.cuda(), imgsz=128, amp=True) | |
def test_utils_benchmarks(): | |
"""Profile YOLO models for performance benchmarks.""" | |
from ultralytics.utils.benchmarks import ProfileModels | |
# Pre-export a dynamic engine model to use dynamic inference | |
YOLO(MODEL).export(format='engine', imgsz=32, dynamic=True, batch=1) | |
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() | |
def test_predict_sam(): | |
"""Test SAM model prediction with various prompts.""" | |
from ultralytics import SAM | |
from ultralytics.models.sam import Predictor as SAMPredictor | |
# Load a model | |
model = SAM(WEIGHTS_DIR / 'sam_b.pt') | |
# Display model information (optional) | |
model.info() | |
# Run inference | |
model(BUS, device=0) | |
# Run inference with bboxes prompt | |
model(BUS, bboxes=[439, 437, 524, 709], device=0) | |
# Run inference with points prompt | |
model(ASSETS / 'zidane.jpg', points=[900, 370], labels=[1], device=0) | |
# Create SAMPredictor | |
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024, model=WEIGHTS_DIR / 'mobile_sam.pt') | |
predictor = SAMPredictor(overrides=overrides) | |
# Set image | |
predictor.set_image(ASSETS / 'zidane.jpg') # set with image file | |
# predictor(bboxes=[439, 437, 524, 709]) | |
# predictor(points=[900, 370], labels=[1]) | |
# Reset image | |
predictor.reset_image() | |