Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
from ultralytics import YOLO | |
from ultralytics.cfg import get_cfg | |
from ultralytics.engine.exporter import Exporter | |
from ultralytics.models.yolo import classify, detect, segment | |
from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR | |
CFG_DET = 'yolov8n.yaml' | |
CFG_SEG = 'yolov8n-seg.yaml' | |
CFG_CLS = 'yolov8n-cls.yaml' # or 'squeezenet1_0' | |
CFG = get_cfg(DEFAULT_CFG) | |
MODEL = WEIGHTS_DIR / 'yolov8n' | |
def test_func(*args): # noqa | |
"""Test function callback.""" | |
print('callback test passed') | |
def test_export(): | |
"""Test model exporting functionality.""" | |
exporter = Exporter() | |
exporter.add_callback('on_export_start', test_func) | |
assert test_func in exporter.callbacks['on_export_start'], 'callback test failed' | |
f = exporter(model=YOLO(CFG_DET).model) | |
YOLO(f)(ASSETS) # exported model inference | |
def test_detect(): | |
"""Test object detection functionality.""" | |
overrides = {'data': 'coco8.yaml', 'model': CFG_DET, 'imgsz': 32, 'epochs': 1, 'save': False} | |
CFG.data = 'coco8.yaml' | |
CFG.imgsz = 32 | |
# Trainer | |
trainer = detect.DetectionTrainer(overrides=overrides) | |
trainer.add_callback('on_train_start', test_func) | |
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed' | |
trainer.train() | |
# Validator | |
val = detect.DetectionValidator(args=CFG) | |
val.add_callback('on_val_start', test_func) | |
assert test_func in val.callbacks['on_val_start'], 'callback test failed' | |
val(model=trainer.best) # validate best.pt | |
# Predictor | |
pred = detect.DetectionPredictor(overrides={'imgsz': [64, 64]}) | |
pred.add_callback('on_predict_start', test_func) | |
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed' | |
result = pred(source=ASSETS, model=f'{MODEL}.pt') | |
assert len(result), 'predictor test failed' | |
overrides['resume'] = trainer.last | |
trainer = detect.DetectionTrainer(overrides=overrides) | |
try: | |
trainer.train() | |
except Exception as e: | |
print(f'Expected exception caught: {e}') | |
return | |
Exception('Resume test failed!') | |
def test_segment(): | |
"""Test image segmentation functionality.""" | |
overrides = {'data': 'coco8-seg.yaml', 'model': CFG_SEG, 'imgsz': 32, 'epochs': 1, 'save': False} | |
CFG.data = 'coco8-seg.yaml' | |
CFG.imgsz = 32 | |
# YOLO(CFG_SEG).train(**overrides) # works | |
# Trainer | |
trainer = segment.SegmentationTrainer(overrides=overrides) | |
trainer.add_callback('on_train_start', test_func) | |
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed' | |
trainer.train() | |
# Validator | |
val = segment.SegmentationValidator(args=CFG) | |
val.add_callback('on_val_start', test_func) | |
assert test_func in val.callbacks['on_val_start'], 'callback test failed' | |
val(model=trainer.best) # validate best.pt | |
# Predictor | |
pred = segment.SegmentationPredictor(overrides={'imgsz': [64, 64]}) | |
pred.add_callback('on_predict_start', test_func) | |
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed' | |
result = pred(source=ASSETS, model=f'{MODEL}-seg.pt') | |
assert len(result), 'predictor test failed' | |
# Test resume | |
overrides['resume'] = trainer.last | |
trainer = segment.SegmentationTrainer(overrides=overrides) | |
try: | |
trainer.train() | |
except Exception as e: | |
print(f'Expected exception caught: {e}') | |
return | |
Exception('Resume test failed!') | |
def test_classify(): | |
"""Test image classification functionality.""" | |
overrides = {'data': 'imagenet10', 'model': CFG_CLS, 'imgsz': 32, 'epochs': 1, 'save': False} | |
CFG.data = 'imagenet10' | |
CFG.imgsz = 32 | |
# YOLO(CFG_SEG).train(**overrides) # works | |
# Trainer | |
trainer = classify.ClassificationTrainer(overrides=overrides) | |
trainer.add_callback('on_train_start', test_func) | |
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed' | |
trainer.train() | |
# Validator | |
val = classify.ClassificationValidator(args=CFG) | |
val.add_callback('on_val_start', test_func) | |
assert test_func in val.callbacks['on_val_start'], 'callback test failed' | |
val(model=trainer.best) | |
# Predictor | |
pred = classify.ClassificationPredictor(overrides={'imgsz': [64, 64]}) | |
pred.add_callback('on_predict_start', test_func) | |
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed' | |
result = pred(source=ASSETS, model=trainer.best) | |
assert len(result), 'predictor test failed' | |