Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import contextlib | |
from copy import copy | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import pytest | |
import torch | |
from PIL import Image | |
from torchvision.transforms import ToTensor | |
from ultralytics import RTDETR, YOLO | |
from ultralytics.cfg import TASK2DATA | |
from ultralytics.data.build import load_inference_source | |
from ultralytics.utils import (ASSETS, DEFAULT_CFG, DEFAULT_CFG_PATH, LINUX, MACOS, ONLINE, ROOT, WEIGHTS_DIR, WINDOWS, | |
checks, is_dir_writeable) | |
from ultralytics.utils.downloads import download | |
from ultralytics.utils.torch_utils import TORCH_1_9 | |
MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path | |
CFG = 'yolov8n.yaml' | |
SOURCE = ASSETS / 'bus.jpg' | |
TMP = (ROOT / '../tests/tmp').resolve() # temp directory for test files | |
IS_TMP_WRITEABLE = is_dir_writeable(TMP) | |
def test_model_forward(): | |
"""Test the forward pass of the YOLO model.""" | |
model = YOLO(CFG) | |
model(source=None, imgsz=32, augment=True) # also test no source and augment | |
def test_model_methods(): | |
"""Test various methods and properties of the YOLO model.""" | |
model = YOLO(MODEL) | |
# Model methods | |
model.info(verbose=True, detailed=True) | |
model = model.reset_weights() | |
model = model.load(MODEL) | |
model.to('cpu') | |
model.fuse() | |
model.clear_callback('on_train_start') | |
model.reset_callbacks() | |
# Model properties | |
_ = model.names | |
_ = model.device | |
_ = model.transforms | |
_ = model.task_map | |
def test_model_profile(): | |
"""Test profiling of the YOLO model with 'profile=True' argument.""" | |
from ultralytics.nn.tasks import DetectionModel | |
model = DetectionModel() # build model | |
im = torch.randn(1, 3, 64, 64) # requires min imgsz=64 | |
_ = model.predict(im, profile=True) | |
def test_predict_txt(): | |
"""Test YOLO predictions with sources (file, dir, glob, recursive glob) specified in a text file.""" | |
txt_file = TMP / 'sources.txt' | |
with open(txt_file, 'w') as f: | |
for x in [ASSETS / 'bus.jpg', ASSETS, ASSETS / '*', ASSETS / '**/*.jpg']: | |
f.write(f'{x}\n') | |
_ = YOLO(MODEL)(source=txt_file, imgsz=32) | |
def test_predict_img(): | |
"""Test YOLO prediction on various types of image sources.""" | |
model = YOLO(MODEL) | |
seg_model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') | |
cls_model = YOLO(WEIGHTS_DIR / 'yolov8n-cls.pt') | |
pose_model = YOLO(WEIGHTS_DIR / 'yolov8n-pose.pt') | |
im = cv2.imread(str(SOURCE)) | |
assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL | |
assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray | |
assert len(model(source=[im, im], save=True, save_txt=True, imgsz=32)) == 2 # batch | |
assert len(list(model(source=[im, im], save=True, stream=True, imgsz=32))) == 2 # stream | |
assert len(model(torch.zeros(320, 640, 3).numpy(), imgsz=32)) == 1 # tensor to numpy | |
batch = [ | |
str(SOURCE), # filename | |
Path(SOURCE), # Path | |
'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI | |
cv2.imread(str(SOURCE)), # OpenCV | |
Image.open(SOURCE), # PIL | |
np.zeros((320, 640, 3))] # numpy | |
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch | |
# Test tensor inference | |
im = cv2.imread(str(SOURCE)) # OpenCV | |
t = cv2.resize(im, (32, 32)) | |
t = ToTensor()(t) | |
t = torch.stack([t, t, t, t]) | |
results = model(t, imgsz=32) | |
assert len(results) == t.shape[0] | |
results = seg_model(t, imgsz=32) | |
assert len(results) == t.shape[0] | |
results = cls_model(t, imgsz=32) | |
assert len(results) == t.shape[0] | |
results = pose_model(t, imgsz=32) | |
assert len(results) == t.shape[0] | |
def test_predict_grey_and_4ch(): | |
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images.""" | |
im = Image.open(SOURCE) | |
directory = TMP / 'im4' | |
directory.mkdir(parents=True, exist_ok=True) | |
source_greyscale = directory / 'greyscale.jpg' | |
source_rgba = directory / '4ch.png' | |
source_non_utf = directory / 'non_UTF_测试文件_tést_image.jpg' | |
source_spaces = directory / 'image with spaces.jpg' | |
im.convert('L').save(source_greyscale) # greyscale | |
im.convert('RGBA').save(source_rgba) # 4-ch PNG with alpha | |
im.save(source_non_utf) # non-UTF characters in filename | |
im.save(source_spaces) # spaces in filename | |
# Inference | |
model = YOLO(MODEL) | |
for f in source_rgba, source_greyscale, source_non_utf, source_spaces: | |
for source in Image.open(f), cv2.imread(str(f)), f: | |
results = model(source, save=True, verbose=True, imgsz=32) | |
assert len(results) == 1 # verify that an image was run | |
f.unlink() # cleanup | |
def test_track_stream(): | |
""" | |
Test YouTube streaming tracking (short 10 frame video) with non-default ByteTrack tracker. | |
Note imgsz=160 required for tracking for higher confidence and better matches | |
""" | |
import yaml | |
model = YOLO(MODEL) | |
model.predict('https://youtu.be/G17sBkb38XQ', imgsz=96, save=True) | |
model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='bytetrack.yaml') | |
model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker='botsort.yaml') | |
# Test Global Motion Compensation (GMC) methods | |
for gmc in 'orb', 'sift', 'ecc': | |
with open(ROOT / 'cfg/trackers/botsort.yaml', encoding='utf-8') as f: | |
data = yaml.safe_load(f) | |
tracker = TMP / f'botsort-{gmc}.yaml' | |
data['gmc_method'] = gmc | |
with open(tracker, 'w', encoding='utf-8') as f: | |
yaml.safe_dump(data, f) | |
model.track('https://ultralytics.com/assets/decelera_portrait_min.mov', imgsz=160, tracker=tracker) | |
def test_val(): | |
"""Test the validation mode of the YOLO model.""" | |
YOLO(MODEL).val(data='coco8.yaml', imgsz=32, save_hybrid=True) | |
def test_train_scratch(): | |
"""Test training the YOLO model from scratch.""" | |
model = YOLO(CFG) | |
model.train(data='coco8.yaml', epochs=2, imgsz=32, cache='disk', batch=-1, close_mosaic=1, name='model') | |
model(SOURCE) | |
def test_train_pretrained(): | |
"""Test training the YOLO model from a pre-trained state.""" | |
model = YOLO(WEIGHTS_DIR / 'yolov8n-seg.pt') | |
model.train(data='coco8-seg.yaml', epochs=1, imgsz=32, cache='ram', copy_paste=0.5, mixup=0.5, name=0) | |
model(SOURCE) | |
def test_export_torchscript(): | |
"""Test exporting the YOLO model to TorchScript format.""" | |
f = YOLO(MODEL).export(format='torchscript', optimize=False) | |
YOLO(f)(SOURCE) # exported model inference | |
def test_export_onnx(): | |
"""Test exporting the YOLO model to ONNX format.""" | |
f = YOLO(MODEL).export(format='onnx', dynamic=True) | |
YOLO(f)(SOURCE) # exported model inference | |
def test_export_openvino(): | |
"""Test exporting the YOLO model to OpenVINO format.""" | |
f = YOLO(MODEL).export(format='openvino') | |
YOLO(f)(SOURCE) # exported model inference | |
def test_export_coreml(): | |
"""Test exporting the YOLO model to CoreML format.""" | |
if not WINDOWS: # RuntimeError: BlobWriter not loaded with coremltools 7.0 on windows | |
if MACOS: | |
f = YOLO(MODEL).export(format='coreml') | |
YOLO(f)(SOURCE) # model prediction only supported on macOS for nms=False models | |
else: | |
YOLO(MODEL).export(format='coreml', nms=True) | |
def test_export_tflite(enabled=False): | |
""" | |
Test exporting the YOLO model to TFLite format. | |
Note TF suffers from install conflicts on Windows and macOS. | |
""" | |
if enabled and LINUX: | |
model = YOLO(MODEL) | |
f = model.export(format='tflite') | |
YOLO(f)(SOURCE) | |
def test_export_pb(enabled=False): | |
""" | |
Test exporting the YOLO model to *.pb format. | |
Note TF suffers from install conflicts on Windows and macOS. | |
""" | |
if enabled and LINUX: | |
model = YOLO(MODEL) | |
f = model.export(format='pb') | |
YOLO(f)(SOURCE) | |
def test_export_paddle(enabled=False): | |
""" | |
Test exporting the YOLO model to Paddle format. | |
Note Paddle protobuf requirements conflicting with onnx protobuf requirements. | |
""" | |
if enabled: | |
YOLO(MODEL).export(format='paddle') | |
def test_export_ncnn(): | |
"""Test exporting the YOLO model to NCNN format.""" | |
f = YOLO(MODEL).export(format='ncnn') | |
YOLO(f)(SOURCE) # exported model inference | |
def test_all_model_yamls(): | |
"""Test YOLO model creation for all available YAML configurations.""" | |
for m in (ROOT / 'cfg' / 'models').rglob('*.yaml'): | |
if 'rtdetr' in m.name: | |
if TORCH_1_9: # torch<=1.8 issue - TypeError: __init__() got an unexpected keyword argument 'batch_first' | |
_ = RTDETR(m.name)(SOURCE, imgsz=640) # must be 640 | |
else: | |
YOLO(m.name) | |
def test_workflow(): | |
"""Test the complete workflow including training, validation, prediction, and exporting.""" | |
model = YOLO(MODEL) | |
model.train(data='coco8.yaml', epochs=1, imgsz=32, optimizer='SGD') | |
model.val(imgsz=32) | |
model.predict(SOURCE, imgsz=32) | |
model.export(format='onnx') # export a model to ONNX format | |
def test_predict_callback_and_setup(): | |
"""Test callback functionality during YOLO prediction.""" | |
def on_predict_batch_end(predictor): | |
"""Callback function that handles operations at the end of a prediction batch.""" | |
path, im0s, _, _ = predictor.batch | |
im0s = im0s if isinstance(im0s, list) else [im0s] | |
bs = [predictor.dataset.bs for _ in range(len(path))] | |
predictor.results = zip(predictor.results, im0s, bs) # results is List[batch_size] | |
model = YOLO(MODEL) | |
model.add_callback('on_predict_batch_end', on_predict_batch_end) | |
dataset = load_inference_source(source=SOURCE) | |
bs = dataset.bs # noqa access predictor properties | |
results = model.predict(dataset, stream=True, imgsz=160) # source already setup | |
for r, im0, bs in results: | |
print('test_callback', im0.shape) | |
print('test_callback', bs) | |
boxes = r.boxes # Boxes object for bbox outputs | |
print(boxes) | |
def test_results(): | |
"""Test various result formats for the YOLO model.""" | |
for m in 'yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt': | |
results = YOLO(WEIGHTS_DIR / m)([SOURCE, SOURCE], imgsz=160) | |
for r in results: | |
r = r.cpu().numpy() | |
r = r.to(device='cpu', dtype=torch.float32) | |
r.save_txt(txt_file=TMP / 'runs/tests/label.txt', save_conf=True) | |
r.save_crop(save_dir=TMP / 'runs/tests/crops/') | |
r.tojson(normalize=True) | |
r.plot(pil=True) | |
r.plot(conf=True, boxes=True) | |
print(r, len(r), r.path) | |
def test_data_utils(): | |
"""Test utility functions in ultralytics/data/utils.py.""" | |
from ultralytics.data.utils import HUBDatasetStats, autosplit | |
from ultralytics.utils.downloads import zip_directory | |
# from ultralytics.utils.files import WorkingDirectory | |
# with WorkingDirectory(ROOT.parent / 'tests'): | |
for task in 'detect', 'segment', 'pose', 'classify': | |
file = Path(TASK2DATA[task]).with_suffix('.zip') # i.e. coco8.zip | |
download(f'https://github.com/ultralytics/hub/raw/main/example_datasets/{file}', unzip=False, dir=TMP) | |
stats = HUBDatasetStats(TMP / file, task=task) | |
stats.get_json(save=True) | |
stats.process_images() | |
autosplit(TMP / 'coco8') | |
zip_directory(TMP / 'coco8/images/val') # zip | |
def test_data_converter(): | |
"""Test dataset converters.""" | |
from ultralytics.data.converter import coco80_to_coco91_class, convert_coco | |
file = 'instances_val2017.json' | |
download(f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{file}', dir=TMP) | |
convert_coco(labels_dir=TMP, save_dir=TMP / 'yolo_labels', use_segments=True, use_keypoints=False, cls91to80=True) | |
coco80_to_coco91_class() | |
def test_data_annotator(): | |
"""Test automatic data annotation.""" | |
from ultralytics.data.annotator import auto_annotate | |
auto_annotate(ASSETS, | |
det_model=WEIGHTS_DIR / 'yolov8n.pt', | |
sam_model=WEIGHTS_DIR / 'mobile_sam.pt', | |
output_dir=TMP / 'auto_annotate_labels') | |
def test_events(): | |
"""Test event sending functionality.""" | |
from ultralytics.hub.utils import Events | |
events = Events() | |
events.enabled = True | |
cfg = copy(DEFAULT_CFG) # does not require deepcopy | |
cfg.mode = 'test' | |
events(cfg) | |
def test_cfg_init(): | |
"""Test configuration initialization utilities.""" | |
from ultralytics.cfg import check_dict_alignment, copy_default_cfg, smart_value | |
with contextlib.suppress(SyntaxError): | |
check_dict_alignment({'a': 1}, {'b': 2}) | |
copy_default_cfg() | |
(Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')).unlink(missing_ok=False) | |
[smart_value(x) for x in ['none', 'true', 'false']] | |
def test_utils_init(): | |
"""Test initialization utilities.""" | |
from ultralytics.utils import get_git_branch, get_git_origin_url, get_ubuntu_version, is_github_actions_ci | |
get_ubuntu_version() | |
is_github_actions_ci() | |
get_git_origin_url() | |
get_git_branch() | |
def test_utils_checks(): | |
"""Test various utility checks.""" | |
checks.check_yolov5u_filename('yolov5n.pt') | |
checks.git_describe(ROOT) | |
checks.check_requirements() # check requirements.txt | |
checks.check_imgsz([600, 600], max_dim=1) | |
checks.check_imshow() | |
checks.check_version('ultralytics', '8.0.0') | |
checks.print_args() | |
# checks.check_imshow(warn=True) | |
def test_utils_benchmarks(): | |
"""Test model benchmarking.""" | |
from ultralytics.utils.benchmarks import ProfileModels | |
ProfileModels(['yolov8n.yaml'], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile() | |
def test_utils_torchutils(): | |
"""Test Torch utility functions.""" | |
from ultralytics.nn.modules.conv import Conv | |
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync | |
x = torch.randn(1, 64, 20, 20) | |
m = Conv(64, 64, k=1, s=2) | |
profile(x, [m], n=3) | |
get_flops_with_torch_profiler(m) | |
time_sync() | |
def test_utils_downloads(): | |
"""Test file download utilities.""" | |
from ultralytics.utils.downloads import get_google_drive_file_info | |
get_google_drive_file_info('https://drive.google.com/file/d/1cqT-cJgANNrhIHCrEufUYhQ4RqiWG_lJ/view?usp=drive_link') | |
def test_utils_ops(): | |
"""Test various operations utilities.""" | |
from ultralytics.utils.ops import (ltwh2xywh, ltwh2xyxy, make_divisible, xywh2ltwh, xywh2xyxy, xywhn2xyxy, | |
xywhr2xyxyxyxy, xyxy2ltwh, xyxy2xywh, xyxy2xywhn, xyxyxyxy2xywhr) | |
make_divisible(17, torch.tensor([8])) | |
boxes = torch.rand(10, 4) # xywh | |
torch.allclose(boxes, xyxy2xywh(xywh2xyxy(boxes))) | |
torch.allclose(boxes, xyxy2xywhn(xywhn2xyxy(boxes))) | |
torch.allclose(boxes, ltwh2xywh(xywh2ltwh(boxes))) | |
torch.allclose(boxes, xyxy2ltwh(ltwh2xyxy(boxes))) | |
boxes = torch.rand(10, 5) # xywhr for OBB | |
boxes[:, 4] = torch.randn(10) * 30 | |
torch.allclose(boxes, xyxyxyxy2xywhr(xywhr2xyxyxyxy(boxes)), rtol=1e-3) | |
def test_utils_files(): | |
"""Test file handling utilities.""" | |
from ultralytics.utils.files import file_age, file_date, get_latest_run, spaces_in_path | |
file_age(SOURCE) | |
file_date(SOURCE) | |
get_latest_run(ROOT / 'runs') | |
path = TMP / 'path/with spaces' | |
path.mkdir(parents=True, exist_ok=True) | |
with spaces_in_path(path) as new_path: | |
print(new_path) | |
def test_nn_modules_conv(): | |
"""Test Convolutional Neural Network modules.""" | |
from ultralytics.nn.modules.conv import CBAM, Conv2, ConvTranspose, DWConvTranspose2d, Focus | |
c1, c2 = 8, 16 # input and output channels | |
x = torch.zeros(4, c1, 10, 10) # BCHW | |
# Run all modules not otherwise covered in tests | |
DWConvTranspose2d(c1, c2)(x) | |
ConvTranspose(c1, c2)(x) | |
Focus(c1, c2)(x) | |
CBAM(c1)(x) | |
# Fuse ops | |
m = Conv2(c1, c2) | |
m.fuse_convs() | |
m(x) | |
def test_nn_modules_block(): | |
"""Test Neural Network block modules.""" | |
from ultralytics.nn.modules.block import C1, C3TR, BottleneckCSP, C3Ghost, C3x | |
c1, c2 = 8, 16 # input and output channels | |
x = torch.zeros(4, c1, 10, 10) # BCHW | |
# Run all modules not otherwise covered in tests | |
C1(c1, c2)(x) | |
C3x(c1, c2)(x) | |
C3TR(c1, c2)(x) | |
C3Ghost(c1, c2)(x) | |
BottleneckCSP(c1, c2)(x) | |
def test_hub(): | |
"""Test Ultralytics HUB functionalities.""" | |
from ultralytics.hub import export_fmts_hub, logout | |
from ultralytics.hub.utils import smart_request | |
export_fmts_hub() | |
logout() | |
smart_request('GET', 'http://github.com', progress=True) | |
def test_model_tune(): | |
"""Tune YOLO model for performance.""" | |
YOLO('yolov8n-pose.pt').tune(data='coco8-pose.yaml', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu') | |
YOLO('yolov8n-cls.pt').tune(data='imagenet10', plots=False, imgsz=32, epochs=1, iterations=2, device='cpu') | |