File size: 7,333 Bytes
d89098d
 
 
 
64c717a
d89098d
64c717a
 
 
 
d89098d
 
 
54f6682
64c717a
6b5a34f
d89098d
 
 
 
 
 
 
 
 
 
 
64c717a
 
 
 
 
 
 
f4f594a
68eace8
f4f594a
 
68eace8
 
f4f594a
 
 
 
 
 
 
68eace8
f4f594a
 
68eace8
 
f4f594a
 
 
 
 
 
 
 
64c717a
513a0c5
64c717a
 
 
024685f
 
 
411008f
64c717a
 
 
 
 
 
 
 
 
94a07a2
 
 
 
411008f
513a0c5
 
 
411008f
64c717a
 
 
513a0c5
 
 
 
 
64c717a
 
 
 
 
 
 
 
513a0c5
 
 
64c717a
 
 
 
513a0c5
 
77b425a
 
 
513a0c5
 
64c717a
 
513a0c5
 
 
54f6682
404174f
 
e7c875a
54f6682
e7c875a
d89098d
 
 
 
 
6b5a34f
d89098d
 
 
 
 
 
68eace8
f4f594a
 
 
 
 
411008f
513a0c5
 
02feb96
513a0c5
1d9d097
513a0c5
 
 
411008f
513a0c5
64c717a
d89098d
5c79297
3d9ebd2
 
 
 
f4f594a
 
 
 
 
 
 
5c79297
8b969e2
3d9ebd2
64c717a
 
e821f26
64c717a
510d222
64c717a
 
 
 
2f2050d
 
 
 
 
 
64c717a
 
5fb7f73
64c717a
 
 
 
 
c6ed7c3
64c717a
 
 
 
 
 
 
 
49b1548
64c717a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import tempfile

import fitz
import gradio as gr
import PIL
import skimage
from fastai.learner import load_learner
from fastai.vision.all import *
from fpdf import FPDF
from huggingface_hub import hf_hub_download
from icevision.all import *
from icevision.models.checkpoint import *
from PIL import Image as PILImage

checkpoint_path = "./allsynthetic-imgsize768.pth"
checkpoint_and_model = model_from_checkpoint(checkpoint_path)
model = checkpoint_and_model["model"]
model_type = checkpoint_and_model["model_type"]
class_map = checkpoint_and_model["class_map"]

img_size = checkpoint_and_model["img_size"]
valid_tfms = tfms.A.Adapter(
    [*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]
)


learn = load_learner(
    hf_hub_download("strickvl/redaction-classifier-fastai", "model.pkl")
)

labels = learn.dls.vocab


def get_content_area(pred_dict) -> int:
    if "content" not in pred_dict["detection"]["labels"]:
        return 0
    content_bboxes = [
        pred_dict["detection"]["bboxes"][idx]
        for idx, label in enumerate(pred_dict["detection"]["labels"])
        if label == "content"
    ]
    cb = content_bboxes[0]
    return (cb.xmax - cb.xmin) * (cb.ymax - cb.ymin)


def get_redaction_area(pred_dict) -> int:
    if "redaction" not in pred_dict["detection"]["labels"]:
        return 0
    redaction_bboxes = [
        pred_dict["detection"]["bboxes"][idx]
        for idx, label in enumerate(pred_dict["detection"]["labels"])
        if label == "redaction"
    ]
    return sum(
        (bbox.xmax - bbox.xmin) * (bbox.ymax - bbox.ymin)
        for bbox in redaction_bboxes
    )


def predict(pdf, confidence, generate_file):
    filename_without_extension = pdf.name[:-4]
    document = fitz.open(pdf.name)
    results = []
    images = []
    total_image_areas = 0
    total_content_areas = 0
    total_redaction_area = 0
    tmp_dir = tempfile.gettempdir()
    for page_num, page in enumerate(document, start=1):
        image_pixmap = page.get_pixmap()
        image = image_pixmap.tobytes()
        _, _, probs = learn.predict(image)
        results.append(
            {labels[i]: float(probs[i]) for i in range(len(labels))}
        )
        if probs[0] > (confidence / 100):
            redaction_count = len(images)
            if not os.path.exists(
                os.path.join(tmp_dir, filename_without_extension)
            ):
                os.makedirs(os.path.join(tmp_dir, filename_without_extension))
            image_pixmap.save(
                os.path.join(
                    tmp_dir, filename_without_extension, f"page-{page_num}.png"
                )
            )
            images.append(
                [
                    f"Redacted page #{redaction_count + 1} on page {page_num}",
                    os.path.join(
                        tmp_dir,
                        filename_without_extension,
                        f"page-{page_num}.png",
                    ),
                ]
            )

    redacted_pages = [
        str(page + 1)
        for page in range(len(results))
        if results[page]["redacted"] > (confidence / 100)
    ]
    report = os.path.join(
        tmp_dir, filename_without_extension, "redacted_pages.pdf"
    )
    if generate_file:
        pdf = FPDF()
        pdf.set_auto_page_break(0)
        imagelist = sorted(
            [
                i
                for i in os.listdir(
                    os.path.join(tmp_dir, filename_without_extension)
                )
                if i.endswith("png")
            ]
        )
        for image in imagelist:
            with PILImage.open(
                os.path.join(tmp_dir, filename_without_extension, image)
            ) as img:
                size = img.size
                width, height = size
                if width > height:
                    pdf.add_page(orientation="L")
                else:
                    pdf.add_page(orientation="P")
                pred_dict = model_type.end2end_detect(
                    img,
                    valid_tfms,
                    model,
                    class_map=class_map,
                    detection_threshold=confidence / 100,
                    display_label=True,
                    display_bbox=True,
                    return_img=True,
                    font_size=16,
                    label_color="#FF59D6",
                )
                # print(pred_dict)

                total_image_areas += pred_dict["width"] * pred_dict["height"]
                total_content_areas += get_content_area(pred_dict)
                total_redaction_area += get_redaction_area(pred_dict)

                pred_dict["img"].save(
                    os.path.join(
                        tmp_dir, filename_without_extension, f"pred-{image}"
                    ),
                )
            # TODO: resize image such that it fits the pdf
            pdf.image(
                os.path.join(
                    tmp_dir, filename_without_extension, f"pred-{image}"
                )
            )
        pdf.output(report, "F")

    text_output = f"A total of {len(redacted_pages)} pages were redacted. \n\nThe redacted page numbers were: {', '.join(redacted_pages)}. \n\n"

    if not generate_file:
        return text_output, images, None

    total_redaction_proportion = round(
        (total_redaction_area / total_image_areas) * 100, 1
    )
    content_redaction_proportion = round(
        (total_redaction_area / total_content_areas) * 100, 1
    )

    redaction_analysis = f"- {total_redaction_proportion}% of the total area of the redacted pages was redacted. \n- {content_redaction_proportion}% of the actual content of those redacted pages was redacted."

    return text_output + redaction_analysis, images, report


title = "Redaction Detector for PDFs"

description = "An MVP app for detection, extraction and analysis of PDF documents that contain redactions. Two models are used for this demo, both trained on publicly released redacted (and unredacted) FOIA documents: \n\n - Classification model trained using [fastai](https://github.com/fastai/fastai) \n- Object detection model trained using [IceVision](https://airctic.com/0.12.0/)"

with open("article.md") as f:
    article = f.read()

examples = [
    ["test1.pdf", 80, True],
    ["test2.pdf", 80, False],
    ["test3.pdf", 80, True],
    ["test4.pdf", 80, False],
]
interpretation = "default"
enable_queue = True
theme = "grass"
allow_flagging = "never"

demo = gr.Interface(
    fn=predict,
    inputs=[
        gr.inputs.File(label="PDF file", file_count="single"),
        gr.inputs.Slider(
            minimum=0,
            maximum=100,
            step=None,
            default=80,
            label="Confidence",
            optional=False,
        ),
        gr.inputs.Checkbox(label="Extract redacted images", default=True),
    ],
    outputs=[
        gr.outputs.Textbox(label="Document Analysis"),
        gr.outputs.Carousel(["text", "image"], label="Redacted pages"),
        gr.outputs.File(label="Download redacted pages"),
    ],
    title=title,
    description=description,
    article=article,
    theme=theme,
    allow_flagging=allow_flagging,
    examples=examples,
    interpretation=interpretation,
)

demo.launch(
    cache_examples=True,
    enable_queue=enable_queue,
)