Spaces:
Sleeping
Sleeping
File size: 1,382 Bytes
6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import torch.nn as nn
from .attention import MultiHeadedAttention
from .transformer_component import SublayerConnection, PositionwiseFeedForward
class TransformerBlock(nn.Module):
"""
Bidirectional Encoder = Transformer (self-attention)
Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
"""
def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
"""
:param hidden: hidden size of transformer
:param attn_heads: head sizes of multi-head attention
:param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
:param dropout: dropout rate
"""
super().__init__()
self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)
self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x, mask):
attn_output, p_attn = self.attention.forward(x, x, x, mask=mask)
self.p_attn = p_attn.cpu().detach().numpy()
x = self.input_sublayer(x, lambda _x: attn_output)
x = self.output_sublayer(x, self.feed_forward)
return self.dropout(x)
|