Spaces:
Running
Running
File size: 9,609 Bytes
6a34fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import argparse
from torch.utils.data import DataLoader
import torch
from bert import BERT
from pretrainer import BERTTrainer, BERTFineTuneTrainer
from dataset import PretrainerDataset, TokenizerDataset
from vocab import Vocab
import time
def train():
parser = argparse.ArgumentParser()
parser.add_argument('-workspace_name', type=str, default=None)
parser.add_argument("-p", "--pretrain_dataset", type=str, default="pretraining/pretrain.txt", help="pretraining dataset for bert")
parser.add_argument("-pv", "--pretrain_val_dataset", type=str, default="pretraining/test.txt", help="pretraining validation dataset for bert")
# default="finetuning/test.txt",
parser.add_argument("-f", "--train_dataset", type=str, default="finetuning/test_in.txt", help="fine tune train dataset for progress classifier")
parser.add_argument("-t", "--test_dataset", type=str, default="finetuning/train_in.txt", help="test set for evaluate fine tune train set")
parser.add_argument("-flabel", "--train_label", type=str, default="finetuning/test_in_label.txt", help="fine tune train dataset for progress classifier")
parser.add_argument("-tlabel", "--test_label", type=str, default="finetuning/train_in_label.txt", help="test set for evaluate fine tune train set")
##### change Checkpoint
parser.add_argument("-c", "--pretrained_bert_checkpoint", type=str, default="output_feb09/bert_trained.model.ep40", help="checkpoint of saved pretrained bert model") # output_1: output_1/bert_trained.model.ep3
parser.add_argument("-v", "--vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab")
parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model")
parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers")
parser.add_argument("-a", "--attn_heads", type=int, default=8, help="number of attention heads")
parser.add_argument("-s", "--seq_len", type=int, default=100, help="maximum sequence length")
parser.add_argument("-b", "--batch_size", type=int, default=32, help="number of batch_size")
parser.add_argument("-e", "--epochs", type=int, default=301, help="number of epochs")
# Use 50 for pretrain, and 10 for fine tune
parser.add_argument("-w", "--num_workers", type=int, default=4, help="dataloader worker size")
# Later run with cuda
parser.add_argument("--with_cuda", type=bool, default=True, help="training with CUDA: true, or false")
parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n")
parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus")
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids")
parser.add_argument("--on_memory", type=bool, default=True, help="Loading on memory: true or false")
parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network")
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of adam")
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="adam first beta value")
# These two need to be changed for fine tuning
# parser.add_argument("--pretrain", type=bool, default=True, help="pretraining: true, or false")
# parser.add_argument("-o", "--output_path", type=str, default="output/bert_trained.seq_encoder.model", help="ex)output/bert.model")
# parser.add_argument("--same_student_prediction", type=bool, default=False, help="predict sequences by same student: true, or false")
#clear;python3 src/main.py --output_path output/masked/bert_trained.model
#clear;python3 src/main.py --output_path output/masked_prediction/bert_trained.model --same_student_prediction True
parser.add_argument("--pretrain", type=bool, default=False, help="pretraining: true, or false")
parser.add_argument("-o", "--output_path", type=str, default="output/bert_fine_tuned.FS.model", help="ex)output/bert.model")
# python3 src/main.py
args = parser.parse_args()
for k,v in vars(args).items():
if ('dataset' in k) or ('path' in k) or ('label' in k):
if v:
setattr(args, f"{k}", args.workspace_name+"/"+v)
print(f"args.{k} : {getattr(args, f'{k}')}")
print("Loading Vocab", args.vocab_path)
vocab_obj = Vocab(args.vocab_path)
vocab_obj.load_vocab()
print("Vocab Size: ", len(vocab_obj.vocab))
if args.pretrain:
print("Pre-training......")
print("Loading Pretraining Dataset", args.pretrain_dataset)
print(f"Workspace: {args.workspace_name}")
pretrain_dataset = PretrainerDataset(args.pretrain_dataset, vocab_obj, seq_len=args.seq_len, select_next_seq=args.same_student_prediction)
print("Loading Pretraining validation Dataset", args.pretrain_val_dataset)
pretrain_valid_dataset = PretrainerDataset(args.pretrain_val_dataset, vocab_obj, seq_len=args.seq_len, select_next_seq=args.same_student_prediction) \
if args.pretrain_val_dataset is not None else None
print("Creating Dataloader")
pretrain_data_loader = DataLoader(pretrain_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
pretrain_val_data_loader = DataLoader(pretrain_valid_dataset, batch_size=args.batch_size, num_workers=args.num_workers)\
if pretrain_valid_dataset is not None else None
print("Building BERT model")
# a = 5/0
# hidden = pretrain_dataset.seq_len if pretrain_dataset.seq_len > args.hidden else args.hidden
# print("hidden: ", hidden)
bert = BERT(len(vocab_obj.vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads, dropout=args.dropout)
print(f"Creating BERT Trainer .... masking: True, prediction: {args.same_student_prediction}")
trainer = BERTTrainer(bert, len(vocab_obj.vocab), train_dataloader=pretrain_data_loader, test_dataloader=pretrain_val_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, same_student_prediction = args.same_student_prediction, workspace_name = args.workspace_name)
print("Training Start")
start_time = time.time()
for epoch in range(args.epochs):
trainer.train(epoch)
if pretrain_val_data_loader is not None:
trainer.test(epoch)
if epoch > 19 and trainer.save_model: # or epoch%10 == 0
trainer.save(epoch, args.output_path)
end_time = time.time()
print("Time Taken to pretrain dataset = ", end_time - start_time)
else:
print("Fine Tuning......")
print("Loading Train Dataset", args.train_dataset)
train_dataset = TokenizerDataset(args.train_dataset, args.train_label, vocab_obj, seq_len=args.seq_len, train=True)
print("Loading Test Dataset", args.test_dataset)
test_dataset = TokenizerDataset(args.test_dataset, args.test_label, vocab_obj, seq_len=args.seq_len, train=False) \
if args.test_dataset is not None else None
print("Creating Dataloader")
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \
if test_dataset is not None else None
print("Load Pre-trained BERT model")
# bert = BERT(len(vocab_obj.vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads)
cuda_condition = torch.cuda.is_available() and args.with_cuda
device = torch.device("cuda:0" if cuda_condition else "cpu")
bert = torch.load(args.pretrained_bert_checkpoint, map_location=device)
if args.workspace_name == "ratio_proportion_change4":
num_labels = 7
elif args.workspace_name == "ratio_proportion_change3":
num_labels = 7
elif args.workspace_name == "scale_drawings_3":
num_labels = 7
elif args.workspace_name == "sales_tax_discounts_two_rates":
num_labels = 3
# num_labels = 1
print(f"Number of Labels : {num_labels}")
print("Creating BERT Fine Tune Trainer")
trainer = BERTFineTuneTrainer(bert, len(vocab_obj.vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, workspace_name = args.workspace_name, num_labels=num_labels)
print("Training Start....")
start_time = time.time()
for epoch in range(args.epochs):
trainer.train(epoch)
if epoch > 4 and trainer.save_model:
trainer.save(epoch, args.output_path)
if test_data_loader is not None:
trainer.test(epoch)
end_time = time.time()
print("Time Taken to fine tune dataset = ", end_time - start_time)
if __name__ == "__main__":
train() |