File size: 20,603 Bytes
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import numpy as np
from keras.preprocessing.sequence import pad_sequences
from transformers  import BertTokenizer
from transformers  import BertForSequenceClassification
import random
from sklearn.metrics import f1_score
from utils import *
import os 
import argparse



import warnings
warnings.filterwarnings("ignore")

class ModelWithTemperature(nn.Module):
    """
    A thin decorator, which wraps a model with temperature scaling
    model (nn.Module):
        A classification neural network
        NB: Output of the neural network should be the classification logits,
            NOT the softmax (or log softmax)!
    """
    def __init__(self, model):
        super(ModelWithTemperature, self).__init__()
        self.model = model
        self.temperature = nn.Parameter(torch.ones(1) * 1.5)

    def forward(self, input_ids, token_type_ids, attention_mask):
        logits = self.model(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[0]
        return self.temperature_scale(logits)

    def temperature_scale(self, logits):
        """
        Perform temperature scaling on logits
        """
        # Expand temperature to match the size of logits
        temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1))
        return logits / temperature

    # This function probably should live outside of this class, but whatever
    def set_temperature(self, valid_loader, args):
        """
        Tune the tempearature of the model (using the validation set).
        We're going to set it to optimize NLL.
        valid_loader (DataLoader): validation set loader
        """
        nll_criterion = nn.CrossEntropyLoss()
        ece_criterion = ECE().to(args.device)

        # First: collect all the logits and labels for the validation set
        logits_list = []
        labels_list = []
        with torch.no_grad():
            for step, batch in enumerate(valid_loader):
                batch = tuple(t.to(args.device) for t in batch)
                b_input_ids, b_input_mask, b_labels = batch
                logits = self.model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
                logits_list.append(logits)
                labels_list.append(b_labels)
            logits = torch.cat(logits_list)
            labels = torch.cat(labels_list)

        # Calculate NLL and ECE before temperature scaling
        before_temperature_nll = nll_criterion(logits, labels).item()
        before_temperature_ece = ece_criterion(logits, labels).item()
        print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))

        # Next: optimize the temperature w.r.t. NLL
        optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50)

        def eval():
            loss = nll_criterion(self.temperature_scale(logits), labels)
            loss.backward()
            return loss
        optimizer.step(eval)

        # Calculate NLL and ECE after temperature scaling
        after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
        after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
        print('Optimal temperature: %.3f' % self.temperature.item())
        print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))

        return self
    
class ECE(nn.Module):
    
    def __init__(self, n_bins=15):
        """
        n_bins (int): number of confidence interval bins
        """
        super(ECE, self).__init__()
        bin_boundaries = torch.linspace(0, 1, n_bins + 1)
        self.bin_lowers = bin_boundaries[:-1]
        self.bin_uppers = bin_boundaries[1:]

    def forward(self, logits, labels):
        softmaxes = F.softmax(logits, dim=1)
        confidences, predictions = torch.max(softmaxes, 1)
        accuracies = predictions.eq(labels)

        ece = torch.zeros(1, device=logits.device)
        for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
            # Calculated |confidence - accuracy| in each bin
            in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
            prop_in_bin = in_bin.float().mean()
            if prop_in_bin.item() > 0:
                accuracy_in_bin = accuracies[in_bin].float().mean()
                avg_confidence_in_bin = confidences[in_bin].mean()
                ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin

        return ece
 
    
class ECE_v2(nn.Module):
    def __init__(self, n_bins=15):
        """
        n_bins (int): number of confidence interval bins
        """
        super(ECE_v2, self).__init__()
        bin_boundaries = torch.linspace(0, 1, n_bins + 1)
        self.bin_lowers = bin_boundaries[:-1]
        self.bin_uppers = bin_boundaries[1:]

    def forward(self, softmaxes, labels):
        confidences, predictions = torch.max(softmaxes, 1)
        accuracies = predictions.eq(labels)
        ece = torch.zeros(1, device=softmaxes.device)

        for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
            # Calculated |confidence - accuracy| in each bin
            in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
            prop_in_bin = in_bin.float().mean()
            if prop_in_bin.item() > 0:
                accuracy_in_bin = accuracies[in_bin].float().mean()
                avg_confidence_in_bin = confidences[in_bin].mean()
                ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
        return ece
    
def accurate_nb(preds, labels):
    pred_flat = np.argmax(preds, axis=1).flatten()
    labels_flat = labels.flatten()
    return np.sum(pred_flat == labels_flat)


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

def apply_dropout(m):
    if type(m) == nn.Dropout:
        m.train()


def main():

    parser = argparse.ArgumentParser(description='Test code - measure the detection peformance')
    parser.add_argument('--eva_iter', default=1, type=int, help='number of passes for mc-dropout when evaluation')
    parser.add_argument('--model', type=str, choices=['base', 'manifold-smoothing', 'mc-dropout','temperature'], default='base')
    parser.add_argument('--seed', type=int, default=0, help='random seed for test')
    parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.")
    parser.add_argument('--index', type=int, default=0, help='random seed you used during training')
    parser.add_argument('--in_dataset', required=True, help='target dataset: 20news')
    parser.add_argument('--out_dataset', required=True, help='out-of-dist dataset')
    parser.add_argument('--eval_batch_size', type=int, default=32)
    parser.add_argument('--saved_dataset', type=str, default='n')
    parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training")
    parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label")
    parser.add_argument('--eps_in', default=0.0001, type=float, help="Perturbation size of in-domain adversarial training")

    args = parser.parse_args()

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    args.device = device
    set_seed(args)

    outf = 'test/'+args.model+'-'+str(args.index)
    if not os.path.isdir(outf):
        os.makedirs(outf)

    if args.model == 'base':
        dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
        pretrained_dir = './model_save/{}'.format(dirname)
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(pretrained_dir)
        model.to(args.device)
        print('Load Tekenizer')

    elif args.model == 'mc-dropout':
        dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
        pretrained_dir = './model_save/{}'.format(dirname)
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(pretrained_dir)
        model.to(args.device)

    elif args.model == 'temperature':
        dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
        pretrained_dir = './model_save/{}'.format(dirname)
        orig_model = BertForSequenceClassification.from_pretrained(pretrained_dir)
        orig_model.to(args.device)
        model = ModelWithTemperature(orig_model)
        model.to(args.device)
    
    elif args.model == 'manifold-smoothing':
        dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.in_dataset, args.index, args.eps_in, args.eps_y, args.eps_out)
        print(dirname)
        pretrained_dir = './model_save/{}'.format(dirname)
        model = BertForSequenceClassification.from_pretrained(pretrained_dir)
        model.to(args.device)
        
    
    if args.saved_dataset == 'n':
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
        train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.in_dataset)
        _, _, nt_test_sentences, _, _, nt_test_labels = load_dataset(args.out_dataset)

        val_input_ids = []
        test_input_ids = []
        nt_test_input_ids = []

        if args.in_dataset == '20news' or args.in_dataset == '20news-15':
            MAX_LEN = 150
        else:
            MAX_LEN = 256

        for sent in val_sentences:
            encoded_sent = tokenizer.encode(
                                sent,                      # Sentence to encode.
                                add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                                truncation= True,
                                max_length = MAX_LEN,          # Truncate all sentences.
                                #return_tensors = 'pt',     # Return pytorch tensors.
                        )
        # Add the encoded sentence to the list.
            val_input_ids.append(encoded_sent)


        for sent in test_sentences:
            encoded_sent = tokenizer.encode(
                                sent,                      # Sentence to encode.
                                add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                                truncation= True,
                                max_length = MAX_LEN,          # Truncate all sentences.
                                #return_tensors = 'pt',     # Return pytorch tensors.
                        )
        # Add the encoded sentence to the list.
            test_input_ids.append(encoded_sent)

        for sent in nt_test_sentences:
            encoded_sent = tokenizer.encode(
                                sent,                    
                                add_special_tokens = True, 
                                truncation= True,
                                max_length = MAX_LEN,        
                        )
            nt_test_input_ids.append(encoded_sent)
            
        # Pad our input tokens
        val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
        test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
        nt_test_input_ids = pad_sequences(nt_test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")

        val_attention_masks = []
        test_attention_masks = []
        nt_test_attention_masks = []

        for seq in val_input_ids:
            seq_mask = [float(i>0) for i in seq]
            val_attention_masks.append(seq_mask)
        for seq in test_input_ids:
            seq_mask = [float(i>0) for i in seq]
            test_attention_masks.append(seq_mask)
        for seq in nt_test_input_ids:
            seq_mask = [float(i>0) for i in seq]
            nt_test_attention_masks.append(seq_mask)


        val_inputs = torch.tensor(val_input_ids)
        val_labels = torch.tensor(val_labels)
        val_masks = torch.tensor(val_attention_masks)

        test_inputs = torch.tensor(test_input_ids)
        test_labels = torch.tensor(test_labels)
        test_masks = torch.tensor(test_attention_masks)

        nt_test_inputs = torch.tensor(nt_test_input_ids)
        nt_test_labels = torch.tensor(nt_test_labels)
        nt_test_masks = torch.tensor(nt_test_attention_masks)

        val_data = TensorDataset(val_inputs, val_masks, val_labels)
        test_data = TensorDataset(test_inputs, test_masks, test_labels)
        nt_test_data = TensorDataset(nt_test_inputs, nt_test_masks, nt_test_labels)
        
        dataset_dir = 'dataset/test'
        if not os.path.exists(dataset_dir):
            os.makedirs(dataset_dir)
        torch.save(val_data, dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset))
        torch.save(test_data, dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset))
        torch.save(nt_test_data, dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset))
    
    else:
        dataset_dir = 'dataset/test'
        val_data = torch.load(dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset))
        test_data = torch.load(dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset))
        nt_test_data = torch.load(dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset))
        
        

    
    
######## saved dataset
    test_sampler = SequentialSampler(test_data)
    test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size)

    nt_test_sampler = SequentialSampler(nt_test_data)
    nt_test_dataloader = DataLoader(nt_test_data, sampler=nt_test_sampler, batch_size=args.eval_batch_size)
    val_sampler = SequentialSampler(val_data)
    val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=args.eval_batch_size)
    
    if args.model == 'temperature':
        model.set_temperature(val_dataloader, args)
    
    model.eval()
    
    if args.model == 'mc-dropout':
        model.apply(apply_dropout)

    correct = 0
    total = 0
    output_list = []
    labels_list = []
 
##### validation dat
    with torch.no_grad():
        for step, batch in enumerate(val_dataloader):
            batch = tuple(t.to(args.device) for t in batch)
            b_input_ids, b_input_mask, b_labels = batch
            total += b_labels.shape[0]
            batch_output = 0
            for j in range(args.eva_iter):
                if args.model == 'temperature':
                    current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits
                else:
                    current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]  #logits
                batch_output = batch_output + F.softmax(current_batch, dim=1)
            batch_output = batch_output/args.eva_iter
            output_list.append(batch_output)
            labels_list.append(b_labels)
            score, predicted = batch_output.max(1)
            correct += predicted.eq(b_labels).sum().item()

    ###calculate accuracy and ECE
    val_eval_accuracy = correct/total
    print("Val Accuracy: {}".format(val_eval_accuracy))
    ece_criterion = ECE_v2().to(args.device)
    softmaxes_ece = torch.cat(output_list)
    labels_ece = torch.cat(labels_list)
    val_ece = ece_criterion(softmaxes_ece, labels_ece).item()
    print('ECE on Val data: {}'.format(val_ece))

#### Test data
    correct = 0
    total = 0
    output_list = []
    labels_list = []
    predict_list = []
    true_list = []
    true_list_ood = []
    predict_mis = []
    predict_in = []
    score_list = []
    correct_index_all = []
    ## test on in-distribution test set
    with torch.no_grad():
        for step, batch in enumerate(test_dataloader):
            batch = tuple(t.to(args.device) for t in batch)
            b_input_ids, b_input_mask, b_labels = batch
            total += b_labels.shape[0]
            batch_output = 0
            for j in range(args.eva_iter):
                if args.model == 'temperature':
                    current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits
                else:
                    current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]  #logits
                batch_output = batch_output + F.softmax(current_batch, dim=1)
            batch_output = batch_output/args.eva_iter
            output_list.append(batch_output)
            labels_list.append(b_labels)
            score, predicted = batch_output.max(1)
     
            correct += predicted.eq(b_labels).sum().item()
            
            correct_index = (predicted == b_labels)
            correct_index_all.append(correct_index) 
            score_list.append(score)
    
    ###calcutae accuracy 
    eval_accuracy = correct/total
    print("Test Accuracy: {}".format(eval_accuracy))
    
    ##calculate ece
    ece_criterion = ECE_v2().to(args.device)
    softmaxes_ece = torch.cat(output_list)
    labels_ece = torch.cat(labels_list)
    ece = ece_criterion(softmaxes_ece, labels_ece).item()
    print('ECE on Test data: {}'.format(ece))

    #confidence for in-distribution data
    score_in_array = torch.cat(score_list)
    #indices of data that are classified correctly
    correct_array = torch.cat(correct_index_all)
    label_array = torch.cat(labels_list)

### test on out-of-distribution data
    predict_ood = []
    score_ood_list = []
    true_list_ood = []
    with torch.no_grad():
        for step, batch in enumerate(nt_test_dataloader):
            batch = tuple(t.to(args.device) for t in batch)
            b_input_ids, b_input_mask, b_labels = batch
            batch_output = 0
            for j in range(args.eva_iter):
                if args.model == 'temperature':
                    current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)
                else:
                    current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
                batch_output = batch_output + F.softmax(current_batch, dim=1)
            batch_output = batch_output/args.eva_iter
            score_out, _ = batch_output.max(1)  

            score_ood_list.append(score_out)
            
    score_ood_array = torch.cat(score_ood_list)
    
    
    
    label_array = label_array.cpu().numpy()
    score_ood_array = score_ood_array.cpu().numpy()
    score_in_array = score_in_array.cpu().numpy()
    correct_array = correct_array.cpu().numpy()
    
    
    
    
 ####### calculate NBAUCC for detection task   
    predict_o = np.zeros(len(score_in_array)+len(score_ood_array)) 
    true_o = np.ones(len(score_in_array)+len(score_ood_array))
    true_o[:len(score_in_array)] = 0   ## in-distribution data as false, ood data as positive
    true_mis = np.ones(len(score_in_array))
    true_mis[correct_array] = 0  ##true instances as false, misclassified instances as positive
    predict_mis = np.zeros(len(score_in_array))
    


    ood_sum = 0
    mis_sum = 0
    
    ood_sum_list = []
    mis_sum_list = []

#### upper bound of the threshold tau for NBAUCC
    stop_points = [0.50, 1.]

    for threshold in np.arange(0., 1.01, 0.02):
        predict_ood_index1 = (score_in_array < threshold)
        predict_ood_index2 = (score_ood_array < threshold)
        predict_ood_index = np.concatenate((predict_ood_index1, predict_ood_index2), axis=0)
        predict_o[predict_ood_index] = 1 
        predict_mis[score_in_array<threshold] = 1
        
        ood = f1_score(true_o, predict_o, average='binary') ##### detection f1 score for a specific threshold 
        mis = f1_score(true_mis, predict_mis, average='binary')


        ood_sum += ood*0.02
        mis_sum += mis*0.02
        
        if threshold in stop_points:
            ood_sum_list.append(ood_sum)
            mis_sum_list.append(mis_sum)
            
    for i in range(len(stop_points)):
        print('OOD detection, NBAUCC {}: {}'.format(stop_points[i], ood_sum_list[i]/stop_points[i]))
        print('misclassification detection, NBAUCC {}: {}'.format(stop_points[i], mis_sum_list[i]/stop_points[i]))

if __name__ == "__main__":
    main()