Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import torch | |
import torch.nn as nn | |
from torch.optim import Adam | |
from torch.utils.data import DataLoader | |
import pickle | |
print("here1",os.getcwd()) | |
from src.dataset import TokenizerDataset, TokenizerDatasetForCalibration | |
from src.vocab import Vocab | |
print("here3",os.getcwd()) | |
from src.bert import BERT | |
from src.seq_model import BERTSM | |
from src.classifier_model import BERTForClassification, BERTForClassificationWithFeats | |
# from src.new_finetuning.optim_schedule import ScheduledOptim | |
import metrics, recalibration, visualization | |
from recalibration import ModelWithTemperature | |
import tqdm | |
import sys | |
import time | |
import numpy as np | |
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import pandas as pd | |
from collections import defaultdict | |
print("here3",os.getcwd()) | |
class BERTFineTuneTrainer: | |
def __init__(self, bertFinetunedClassifierwithFeats: BERT, #BERTForClassificationWithFeats | |
vocab_size: int, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, | |
num_labels=2, log_folder_path: str = None): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
# Setup cuda device for BERT training, argument -c, --cuda should be true | |
# cuda_condition = torch.cuda.is_available() and with_cuda | |
# self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
self.device = torch.device("cpu") #torch.device("cuda:0" if cuda_condition else "cpu") | |
# print(cuda_condition, " Device used = ", self.device) | |
print(" Device used = ", self.device) | |
# available_gpus = list(range(torch.cuda.device_count())) | |
# This BERT model will be saved every epoch | |
self.model = bertFinetunedClassifierwithFeats.to("cpu") | |
print(self.model.parameters()) | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
# Initialize the BERT Language Model, with BERT model | |
# self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device) | |
# self.model = bertFinetunedClassifierwithFeats | |
# print(self.model.bert.parameters()) | |
# for param in self.model.bert.parameters(): | |
# param.requires_grad = False | |
# BERTForClassificationWithFeats(self.bert, num_labels, 18).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device) | |
# Distributed GPU training if CUDA can detect more than 1 GPU | |
# if with_cuda and torch.cuda.device_count() > 1: | |
# print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
# self.model = nn.DataParallel(self.model, device_ids=available_gpus) | |
# Setting the train, validation and test data loader | |
# self.train_data = train_dataloader | |
# self.val_data = val_dataloader | |
self.test_data = test_dataloader | |
# self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9 | |
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) | |
# self.optim_schedule = ScheduledOptim(self.optim, self.model.bert.hidden, n_warmup_steps=warmup_steps) | |
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) | |
self.criterion = nn.CrossEntropyLoss() | |
# if num_labels == 1: | |
# self.criterion = nn.MSELoss() | |
# elif num_labels == 2: | |
# self.criterion = nn.BCEWithLogitsLoss() | |
# # self.criterion = nn.CrossEntropyLoss() | |
# elif num_labels > 2: | |
# self.criterion = nn.CrossEntropyLoss() | |
# self.criterion = nn.BCEWithLogitsLoss() | |
self.log_freq = log_freq | |
self.log_folder_path = log_folder_path | |
# self.workspace_name = workspace_name | |
# self.finetune_task = finetune_task | |
# self.save_model = False | |
# self.avg_loss = 10000 | |
self.start_time = time.time() | |
# self.probability_list = [] | |
for fi in ['test']: #'val', | |
f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w') | |
f.close() | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
# def train(self, epoch): | |
# self.iteration(epoch, self.train_data) | |
# def val(self, epoch): | |
# self.iteration(epoch, self.val_data, phase="val") | |
def test(self, epoch): | |
# if epoch == 0: | |
# self.avg_loss = 10000 | |
self.iteration(epoch, self.test_data, phase="test") | |
def iteration(self, epoch, data_loader, phase="train"): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (phase, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
avg_loss = 0.0 | |
total_correct = 0 | |
total_element = 0 | |
plabels = [] | |
tlabels = [] | |
probabs = [] | |
positive_class_probs=[] | |
if phase == "train": | |
self.model.train() | |
else: | |
self.model.eval() | |
# self.probability_list = [] | |
with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f: | |
sys.stdout = f | |
for i, data in data_iter: | |
# 0. batch_data will be sent into the device(GPU or cpu) | |
data = {key: value.to(self.device) for key, value in data.items()} | |
if phase == "train": | |
logits = self.model.forward(data["input"], data["segment_label"], data["feat"]) | |
else: | |
with torch.no_grad(): | |
logits = self.model.forward(data["input"].cpu(), data["segment_label"].cpu(), data["feat"].cpu()) | |
logits = logits.cpu() | |
loss = self.criterion(logits, data["label"]) | |
# if torch.cuda.device_count() > 1: | |
# loss = loss.mean() | |
# 3. backward and optimization only in train | |
# if phase == "train": | |
# self.optim_schedule.zero_grad() | |
# loss.backward() | |
# self.optim_schedule.step_and_update_lr() | |
# prediction accuracy | |
probs = nn.Softmax(dim=-1)(logits) # Probabilities | |
probabs.extend(probs.detach().cpu().numpy().tolist()) | |
predicted_labels = torch.argmax(probs, dim=-1) #correct | |
# self.probability_list.append(probs) | |
# true_labels = torch.argmax(data["label"], dim=-1) | |
plabels.extend(predicted_labels.cpu().numpy()) | |
tlabels.extend(data['label'].cpu().numpy()) | |
positive_class_probs = [prob[1] for prob in probabs] | |
# Compare predicted labels to true labels and calculate accuracy | |
correct = (data['label'] == predicted_labels).sum().item() | |
avg_loss += loss.item() | |
total_correct += correct | |
# total_element += true_labels.nelement() | |
total_element += data["label"].nelement() | |
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element) | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss / (i + 1), | |
"avg_acc": total_correct / total_element * 100 if total_element != 0 else 0, | |
"loss": loss.item() | |
} | |
if i % self.log_freq == 0: | |
data_iter.write(str(post_fix)) | |
precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0) | |
recalls = recall_score(tlabels, plabels, average="weighted") | |
f1_scores = f1_score(tlabels, plabels, average="weighted") | |
cmatrix = confusion_matrix(tlabels, plabels) | |
end_time = time.time() | |
auc_score = roc_auc_score(tlabels, positive_class_probs) | |
final_msg = { | |
"avg_loss": avg_loss / len(data_iter), | |
"total_acc": total_correct * 100.0 / total_element, | |
"precisions": precisions, | |
"recalls": recalls, | |
"f1_scores": f1_scores, | |
# "confusion_matrix": f"{cmatrix}", | |
# "true_labels": f"{tlabels}", | |
# "predicted_labels": f"{plabels}", | |
"time_taken_from_start": end_time - self.start_time, | |
"auc_score":auc_score | |
} | |
with open("result.txt", 'w') as file: | |
for key, value in final_msg.items(): | |
file.write(f"{key}: {value}\n") | |
print(final_msg) | |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs) | |
with open("roc_data.pkl", "wb") as f: | |
pickle.dump((fpr, tpr, thresholds), f) | |
print(final_msg) | |
f.close() | |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1: | |
sys.stdout = f1 | |
final_msg = { | |
"epoch": f"EP{epoch}_{phase}", | |
"confusion_matrix": f"{cmatrix}", | |
"true_labels": f"{tlabels if epoch == 0 else ''}", | |
"predicted_labels": f"{plabels}", | |
"probabilities": f"{probabs}", | |
"time_taken_from_start": end_time - self.start_time | |
} | |
print(final_msg) | |
f1.close() | |
sys.stdout = sys.__stdout__ | |
sys.stdout = sys.__stdout__ | |
class BERTFineTuneCalibratedTrainer: | |
def __init__(self, bertFinetunedClassifierwithFeats: BERT, #BERTForClassificationWithFeats | |
vocab_size: int, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, | |
num_labels=2, log_folder_path: str = None): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
# Setup cuda device for BERT training, argument -c, --cuda should be true | |
cuda_condition = torch.cuda.is_available() and with_cuda | |
self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
print(cuda_condition, " Device used = ", self.device) | |
# available_gpus = list(range(torch.cuda.device_count())) | |
# This BERT model will be saved every epoch | |
self.model = bertFinetunedClassifierwithFeats | |
print(self.model.parameters()) | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
# Initialize the BERT Language Model, with BERT model | |
# self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device) | |
# self.model = bertFinetunedClassifierwithFeats | |
# print(self.model.bert.parameters()) | |
# for param in self.model.bert.parameters(): | |
# param.requires_grad = False | |
# BERTForClassificationWithFeats(self.bert, num_labels, 18).to(self.device) | |
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device) | |
# Distributed GPU training if CUDA can detect more than 1 GPU | |
# if with_cuda and torch.cuda.device_count() > 1: | |
# print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
# self.model = nn.DataParallel(self.model, device_ids=available_gpus) | |
# Setting the train, validation and test data loader | |
# self.train_data = train_dataloader | |
# self.val_data = val_dataloader | |
self.test_data = test_dataloader | |
# self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9 | |
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) | |
# self.optim_schedule = ScheduledOptim(self.optim, self.model.bert.hidden, n_warmup_steps=warmup_steps) | |
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) | |
self.criterion = nn.CrossEntropyLoss() | |
# if num_labels == 1: | |
# self.criterion = nn.MSELoss() | |
# elif num_labels == 2: | |
# self.criterion = nn.BCEWithLogitsLoss() | |
# # self.criterion = nn.CrossEntropyLoss() | |
# elif num_labels > 2: | |
# self.criterion = nn.CrossEntropyLoss() | |
# self.criterion = nn.BCEWithLogitsLoss() | |
self.log_freq = log_freq | |
self.log_folder_path = log_folder_path | |
# self.workspace_name = workspace_name | |
# self.finetune_task = finetune_task | |
# self.save_model = False | |
# self.avg_loss = 10000 | |
self.start_time = time.time() | |
# self.probability_list = [] | |
for fi in ['test']: #'val', | |
f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w') | |
f.close() | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
# def train(self, epoch): | |
# self.iteration(epoch, self.train_data) | |
# def val(self, epoch): | |
# self.iteration(epoch, self.val_data, phase="val") | |
def test(self, epoch): | |
# if epoch == 0: | |
# self.avg_loss = 10000 | |
self.iteration(epoch, self.test_data, phase="test") | |
def iteration(self, epoch, data_loader, phase="train"): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (phase, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
avg_loss = 0.0 | |
total_correct = 0 | |
total_element = 0 | |
plabels = [] | |
tlabels = [] | |
probabs = [] | |
if phase == "train": | |
self.model.train() | |
else: | |
self.model.eval() | |
# self.probability_list = [] | |
with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f: | |
sys.stdout = f | |
for i, data in data_iter: | |
# 0. batch_data will be sent into the device(GPU or cpu) | |
# print(data_pair[0]) | |
data = {key: value.to(self.device) for key, value in data[0].items()} | |
# print(f"data : {data}") | |
# data = {key: value.to(self.device) for key, value in data.items()} | |
# if phase == "train": | |
# logits = self.model.forward(data["input"], data["segment_label"], data["feat"]) | |
# else: | |
with torch.no_grad(): | |
# logits = self.model.forward(data["input"], data["segment_label"], data["feat"]) | |
logits = self.model.forward(data) | |
loss = self.criterion(logits, data["label"]) | |
if torch.cuda.device_count() > 1: | |
loss = loss.mean() | |
# 3. backward and optimization only in train | |
# if phase == "train": | |
# self.optim_schedule.zero_grad() | |
# loss.backward() | |
# self.optim_schedule.step_and_update_lr() | |
# prediction accuracy | |
probs = nn.Softmax(dim=-1)(logits) # Probabilities | |
probabs.extend(probs.detach().cpu().numpy().tolist()) | |
predicted_labels = torch.argmax(probs, dim=-1) #correct | |
# self.probability_list.append(probs) | |
# true_labels = torch.argmax(data["label"], dim=-1) | |
plabels.extend(predicted_labels.cpu().numpy()) | |
tlabels.extend(data['label'].cpu().numpy()) | |
positive_class_probs = [prob[1] for prob in probabs] | |
# Compare predicted labels to true labels and calculate accuracy | |
correct = (data['label'] == predicted_labels).sum().item() | |
avg_loss += loss.item() | |
total_correct += correct | |
# total_element += true_labels.nelement() | |
total_element += data["label"].nelement() | |
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element) | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss / (i + 1), | |
"avg_acc": total_correct / total_element * 100 if total_element != 0 else 0, | |
"loss": loss.item() | |
} | |
if i % self.log_freq == 0: | |
data_iter.write(str(post_fix)) | |
precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0) | |
recalls = recall_score(tlabels, plabels, average="weighted") | |
f1_scores = f1_score(tlabels, plabels, average="weighted") | |
cmatrix = confusion_matrix(tlabels, plabels) | |
auc_score = roc_auc_score(tlabels, positive_class_probs) | |
end_time = time.time() | |
final_msg = { | |
"avg_loss": avg_loss / len(data_iter), | |
"total_acc": total_correct * 100.0 / total_element, | |
"precisions": precisions, | |
"recalls": recalls, | |
"f1_scores": f1_scores, | |
"auc_score":auc_score, | |
# "confusion_matrix": f"{cmatrix}", | |
# "true_labels": f"{tlabels}", | |
# "predicted_labels": f"{plabels}", | |
"time_taken_from_start": end_time - self.start_time | |
} | |
with open("result.txt", 'w') as file: | |
for key, value in final_msg.items(): | |
file.write(f"{key}: {value}\n") | |
print(final_msg) | |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs) | |
f.close() | |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1: | |
sys.stdout = f1 | |
final_msg = { | |
"confusion_matrix": f"{cmatrix}", | |
"true_labels": f"{tlabels if epoch == 0 else ''}", | |
"predicted_labels": f"{plabels}", | |
"probabilities": f"{probabs}", | |
"time_taken_from_start": end_time - self.start_time | |
} | |
print(final_msg) | |
f1.close() | |
sys.stdout = sys.__stdout__ | |
sys.stdout = sys.__stdout__ | |
def train(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-workspace_name', type=str, default=None) | |
parser.add_argument('-code', type=str, default=None, help="folder for pretraining outputs and logs") | |
parser.add_argument('-finetune_task', type=str, default=None, help="folder inside finetuning") | |
parser.add_argument("-attention", type=bool, default=False, help="analyse attention scores") | |
parser.add_argument("-diff_test_folder", type=bool, default=False, help="use for different test folder") | |
parser.add_argument("-embeddings", type=bool, default=False, help="get and analyse embeddings") | |
parser.add_argument('-embeddings_file_name', type=str, default=None, help="file name of embeddings") | |
parser.add_argument("-pretrain", type=bool, default=False, help="pretraining: true, or false") | |
# parser.add_argument('-opts', nargs='+', type=str, default=None, help='List of optional steps') | |
parser.add_argument("-max_mask", type=int, default=0.15, help="% of input tokens selected for masking") | |
# parser.add_argument("-p", "--pretrain_dataset", type=str, default="pretraining/pretrain.txt", help="pretraining dataset for bert") | |
# parser.add_argument("-pv", "--pretrain_val_dataset", type=str, default="pretraining/test.txt", help="pretraining validation dataset for bert") | |
# default="finetuning/test.txt", | |
parser.add_argument("-vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab") | |
parser.add_argument("-train_dataset_path", type=str, default="train.txt", help="fine tune train dataset for progress classifier") | |
parser.add_argument("-val_dataset_path", type=str, default="val.txt", help="test set for evaluate fine tune train set") | |
parser.add_argument("-test_dataset_path", type=str, default="test.txt", help="test set for evaluate fine tune train set") | |
parser.add_argument("-num_labels", type=int, default=2, help="Number of labels") | |
parser.add_argument("-train_label_path", type=str, default="train_label.txt", help="fine tune train dataset for progress classifier") | |
parser.add_argument("-val_label_path", type=str, default="val_label.txt", help="test set for evaluate fine tune train set") | |
parser.add_argument("-test_label_path", type=str, default="test_label.txt", help="test set for evaluate fine tune train set") | |
##### change Checkpoint for finetuning | |
parser.add_argument("-pretrained_bert_checkpoint", type=str, default=None, help="checkpoint of saved pretrained bert model") | |
parser.add_argument("-finetuned_bert_classifier_checkpoint", type=str, default=None, help="checkpoint of saved finetuned bert model") #."output_feb09/bert_trained.model.ep40" | |
#."output_feb09/bert_trained.model.ep40" | |
parser.add_argument('-check_epoch', type=int, default=None) | |
parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model") #64 | |
parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers") #4 | |
parser.add_argument("-a", "--attn_heads", type=int, default=4, help="number of attention heads") #8 | |
parser.add_argument("-s", "--seq_len", type=int, default=128, help="maximum sequence length") | |
parser.add_argument("-b", "--batch_size", type=int, default=500, help="number of batch_size") #64 | |
parser.add_argument("-e", "--epochs", type=int, default=1)#1501, help="number of epochs") #501 | |
# Use 50 for pretrain, and 10 for fine tune | |
parser.add_argument("-w", "--num_workers", type=int, default=0, help="dataloader worker size") | |
# Later run with cuda | |
parser.add_argument("--with_cuda", type=bool, default=False, help="training with CUDA: true, or false") | |
parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n") | |
# parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus") | |
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids") | |
# parser.add_argument("--on_memory", type=bool, default=False, help="Loading on memory: true or false") | |
parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network") | |
parser.add_argument("--lr", type=float, default=1e-05, help="learning rate of adam") #1e-3 | |
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam") | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value") | |
parser.add_argument("--adam_beta2", type=float, default=0.98, help="adam first beta value") #0.999 | |
parser.add_argument("-o", "--output_path", type=str, default="bert_trained.seq_encoder.model", help="ex)output/bert.model") | |
# parser.add_argument("-o", "--output_path", type=str, default="output/bert_fine_tuned.model", help="ex)output/bert.model") | |
args = parser.parse_args() | |
for k,v in vars(args).items(): | |
if 'path' in k: | |
if v: | |
if k == "output_path": | |
if args.code: | |
setattr(args, f"{k}", args.workspace_name+f"/output/{args.code}/"+v) | |
elif args.finetune_task: | |
setattr(args, f"{k}", args.workspace_name+f"/output/{args.finetune_task}/"+v) | |
else: | |
setattr(args, f"{k}", args.workspace_name+"/output/"+v) | |
elif k != "vocab_path": | |
if args.pretrain: | |
setattr(args, f"{k}", args.workspace_name+"/pretraining/"+v) | |
else: | |
if args.code: | |
setattr(args, f"{k}", args.workspace_name+f"/{args.code}/"+v) | |
elif args.finetune_task: | |
if args.diff_test_folder and "test" in k: | |
setattr(args, f"{k}", args.workspace_name+f"/finetuning/"+v) | |
else: | |
setattr(args, f"{k}", args.workspace_name+f"/finetuning/{args.finetune_task}/"+v) | |
else: | |
setattr(args, f"{k}", args.workspace_name+"/finetuning/"+v) | |
else: | |
setattr(args, f"{k}", args.workspace_name+"/"+v) | |
print(f"args.{k} : {getattr(args, f'{k}')}") | |
print("Loading Vocab", args.vocab_path) | |
vocab_obj = Vocab(args.vocab_path) | |
vocab_obj.load_vocab() | |
print("Vocab Size: ", len(vocab_obj.vocab)) | |
print("Testing using finetuned model......") | |
print("Loading Test Dataset", args.test_dataset_path) | |
test_dataset = TokenizerDataset(args.test_dataset_path, args.test_label_path, vocab_obj, seq_len=args.seq_len) | |
# test_dataset = TokenizerDatasetForCalibration(args.test_dataset_path, args.test_label_path, vocab_obj, seq_len=args.seq_len) | |
print("Creating Dataloader...") | |
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) | |
print("Load fine-tuned BERT classifier model with feats") | |
# cuda_condition = torch.cuda.is_available() and args.with_cuda | |
device = torch.device("cpu") #torch.device("cuda:0" if cuda_condition else "cpu") | |
finetunedBERTclassifier = torch.load(args.finetuned_bert_classifier_checkpoint, map_location=device) | |
if isinstance(finetunedBERTclassifier, torch.nn.DataParallel): | |
finetunedBERTclassifier = finetunedBERTclassifier.module | |
new_log_folder = f"{args.workspace_name}/logs" | |
new_output_folder = f"{args.workspace_name}/output" | |
if args.finetune_task: # is sent almost all the time | |
new_log_folder = f"{args.workspace_name}/logs/{args.finetune_task}" | |
new_output_folder = f"{args.workspace_name}/output/{args.finetune_task}" | |
if not os.path.exists(new_log_folder): | |
os.makedirs(new_log_folder) | |
if not os.path.exists(new_output_folder): | |
os.makedirs(new_output_folder) | |
print("Creating BERT Fine Tuned Test Trainer") | |
trainer = BERTFineTuneTrainer(finetunedBERTclassifier, | |
len(vocab_obj.vocab), test_dataloader=test_data_loader, | |
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, | |
with_cuda=args.with_cuda, cuda_devices = args.cuda_devices, log_freq=args.log_freq, | |
workspace_name = args.workspace_name, num_labels=args.num_labels, log_folder_path=new_log_folder) | |
# trainer = BERTFineTuneCalibratedTrainer(finetunedBERTclassifier, | |
# len(vocab_obj.vocab), test_dataloader=test_data_loader, | |
# lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, | |
# with_cuda=args.with_cuda, cuda_devices = args.cuda_devices, log_freq=args.log_freq, | |
# workspace_name = args.workspace_name, num_labels=args.num_labels, log_folder_path=new_log_folder) | |
print("Testing fine-tuned model Start....") | |
start_time = time.time() | |
repoch = range(args.check_epoch, args.epochs) if args.check_epoch else range(args.epochs) | |
counter = 0 | |
# patience = 10 | |
for epoch in repoch: | |
print(f'Test Epoch {epoch} Starts, Time: {time.strftime("%D %T", time.localtime(time.time()))}') | |
trainer.test(epoch) | |
# pickle.dump(trainer.probability_list, open(f"{args.workspace_name}/output/aaai/change4_mid_prob_{epoch}.pkl","wb")) | |
print(f'Test Epoch {epoch} Ends, Time: {time.strftime("%D %T", time.localtime(time.time()))} \n') | |
end_time = time.time() | |
print("Time Taken to fine-tune model = ", end_time - start_time) | |
print(f'Pretraining Ends, Time: {time.strftime("%D %T", time.localtime(end_time))}') | |
if __name__ == "__main__": | |
train() |