Spaces:
Running
Running
import torch.nn as nn | |
from transformer import TransformerBlock | |
from embedding import BERTEmbedding | |
class BERT(nn.Module): | |
""" | |
BERT model : Bidirectional Encoder Representations from Transformers. | |
""" | |
def __init__(self, vocab_size, hidden=768, n_layers=12, attn_heads=12, dropout=0.1): | |
""" | |
:param vocab_size: vocab_size of total words | |
:param hidden: BERT model hidden size | |
:param n_layers: numbers of Transformer blocks(layers) | |
:param attn_heads: number of attention heads | |
:param dropout: dropout rate | |
""" | |
super().__init__() | |
self.hidden = hidden | |
self.n_layers = n_layers | |
self.attn_heads = attn_heads | |
# paper noted they used 4*hidden_size for ff_network_hidden_size | |
self.feed_forward_hidden = hidden * 4 | |
# embedding for BERT, sum of positional, segment, token embeddings | |
self.embedding = BERTEmbedding(vocab_size=vocab_size, embed_size=hidden) | |
# multi-layers transformer blocks, deep network | |
self.transformer_blocks = nn.ModuleList( | |
[TransformerBlock(hidden, attn_heads, hidden * 4, dropout) for _ in range(n_layers)]) | |
def forward(self, x, segment_info): | |
# attention masking for padded token | |
# torch.ByteTensor([batch_size, 1, seq_len, seq_len) | |
mask = (x > 0).unsqueeze(1).repeat(1, x.size(1), 1).unsqueeze(1) | |
# print("bert mask: ", mask) | |
# embedding the indexed sequence to sequence of vectors | |
x = self.embedding(x, segment_info) | |
# running over multiple transformer blocks | |
for transformer in self.transformer_blocks: | |
x = transformer.forward(x, mask) | |
return x | |