Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.optim import Adam, SGD | |
from torch.utils.data import DataLoader | |
import pickle | |
from bert import BERT | |
from seq_model import BERTSM | |
from classifier_model import BERTForClassification | |
from optim_schedule import ScheduledOptim | |
import tqdm | |
import sys | |
import numpy as np | |
import visualization | |
from sklearn.metrics import precision_score, recall_score, f1_score | |
class ECE(nn.Module): | |
def __init__(self, n_bins=15): | |
""" | |
n_bins (int): number of confidence interval bins | |
""" | |
super(ECE, self).__init__() | |
bin_boundaries = torch.linspace(0, 1, n_bins + 1) | |
self.bin_lowers = bin_boundaries[:-1] | |
self.bin_uppers = bin_boundaries[1:] | |
def forward(self, logits, labels): | |
softmaxes = F.softmax(logits, dim=1) | |
confidences, predictions = torch.max(softmaxes, 1) | |
labels = torch.argmax(labels,1) | |
accuracies = predictions.eq(labels) | |
ece = torch.zeros(1, device=logits.device) | |
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): | |
# Calculated |confidence - accuracy| in each bin | |
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) | |
prop_in_bin = in_bin.float().mean() | |
if prop_in_bin.item() > 0: | |
accuracy_in_bin = accuracies[in_bin].float().mean() | |
avg_confidence_in_bin = confidences[in_bin].mean() | |
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin | |
return ece | |
def accurate_nb(preds, labels): | |
pred_flat = np.argmax(preds, axis=1).flatten() | |
labels_flat = np.argmax(labels, axis=1).flatten() | |
labels_flat = labels.flatten() | |
return np.sum(pred_flat == labels_flat) | |
class BERTTrainer: | |
""" | |
# Sequence.. | |
BERTTrainer make the pretrained BERT model with two LM training method. | |
1. Masked Language Model : 3.3.1 Task #1: Masked LM | |
""" | |
def __init__(self, bert: BERT, vocab_size: int, | |
train_dataloader: DataLoader, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, same_student_prediction = False, | |
workspace_name=None): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param train_dataloader: train dataset data loader | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
# Setup cuda device for BERT training, argument -c, --cuda should be true | |
cuda_condition = torch.cuda.is_available() and with_cuda | |
self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
print("Device used = ", self.device) | |
# This BERT model will be saved every epoch | |
self.bert = bert | |
# Initialize the BERT Language Model, with BERT model | |
self.model = BERTSM(bert, vocab_size).to(self.device) | |
# Distributed GPU training if CUDA can detect more than 1 GPU | |
if with_cuda and torch.cuda.device_count() > 1: | |
print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
self.model = nn.DataParallel(self.model, device_ids=cuda_devices) | |
# Setting the train and test data loader | |
self.train_data = train_dataloader | |
self.test_data = test_dataloader | |
# Setting the Adam optimizer with hyper-param | |
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay) | |
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps) | |
# Using Negative Log Likelihood Loss function for predicting the masked_token | |
self.criterion = nn.NLLLoss(ignore_index=0) | |
self.log_freq = log_freq | |
self.same_student_prediction = same_student_prediction | |
self.workspace_name = workspace_name | |
self.save_model = False | |
self.avg_loss = 10000 | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
def train(self, epoch): | |
self.iteration(epoch, self.train_data) | |
def test(self, epoch): | |
self.iteration(epoch, self.test_data, train=False) | |
def iteration(self, epoch, data_loader, train=True): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
str_code = "train" if train else "test" | |
code = "masked_prediction" if self.same_student_prediction else "masked" | |
self.log_file = f"{self.workspace_name}/logs/{code}/log_{str_code}_pretrained.txt" | |
bert_hidden_representations = [] | |
if epoch == 0: | |
f = open(self.log_file, 'w') | |
f.close() | |
if not train: | |
self.avg_loss = 10000 | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (str_code, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
avg_loss_mask = 0.0 | |
total_correct_mask = 0 | |
total_element_mask = 0 | |
avg_loss_pred = 0.0 | |
total_correct_pred = 0 | |
total_element_pred = 0 | |
avg_loss = 0.0 | |
with open(self.log_file, 'a') as f: | |
sys.stdout = f | |
for i, data in data_iter: | |
# 0. batch_data will be sent into the device(GPU or cpu) | |
data = {key: value.to(self.device) for key, value in data.items()} | |
# 1. forward the next_sentence_prediction and masked_lm model | |
# next_sent_output, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"]) | |
if self.same_student_prediction: | |
bert_hidden_rep, mask_lm_output, same_student_output = self.model.forward(data["bert_input"], data["segment_label"], self.same_student_prediction) | |
else: | |
bert_hidden_rep, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"], self.same_student_prediction) | |
embeddings = [h for h in bert_hidden_rep.cpu().detach().numpy()] | |
bert_hidden_representations.extend(embeddings) | |
# 2-2. NLLLoss of predicting masked token word | |
mask_loss = self.criterion(mask_lm_output.transpose(1, 2), data["bert_label"]) | |
# 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure | |
if self.same_student_prediction: | |
# 2-1. NLL(negative log likelihood) loss of is_next classification result | |
same_student_loss = self.criterion(same_student_output, data["is_same_student"]) | |
loss = same_student_loss + mask_loss | |
else: | |
loss = mask_loss | |
# 3. backward and optimization only in train | |
if train: | |
self.optim_schedule.zero_grad() | |
loss.backward() | |
self.optim_schedule.step_and_update_lr() | |
non_zero_mask = (data["bert_label"] != 0).float() | |
predictions = torch.argmax(mask_lm_output, dim=-1) | |
predicted_masked = predictions*non_zero_mask | |
mask_correct = ((data["bert_label"] == predicted_masked)*non_zero_mask).sum().item() | |
avg_loss_mask += loss.item() | |
total_correct_mask += mask_correct | |
total_element_mask += non_zero_mask.sum().item() | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss_mask / (i + 1), | |
"avg_acc_mask": total_correct_mask / total_element_mask * 100, | |
"loss": loss.item() | |
} | |
# next sentence prediction accuracy | |
if self.same_student_prediction: | |
correct = same_student_output.argmax(dim=-1).eq(data["is_same_student"]).sum().item() | |
avg_loss_pred += loss.item() | |
total_correct_pred += correct | |
total_element_pred += data["is_same_student"].nelement() | |
# correct = next_sent_output.argmax(dim=-1).eq(data["is_next"]).sum().item() | |
post_fix["avg_loss"] = avg_loss_pred / (i + 1) | |
post_fix["avg_acc_pred"] = total_correct_pred / total_element_pred * 100 | |
post_fix["loss"] = loss.item() | |
avg_loss +=loss.item() | |
if i % self.log_freq == 0: | |
data_iter.write(str(post_fix)) | |
# if not train and epoch > 20 : | |
# pickle.dump(mask_lm_output.cpu().detach().numpy(), open(f"logs/mask/mask_out_e{epoch}_{i}.pkl","wb")) | |
# pickle.dump(data["bert_label"].cpu().detach().numpy(), open(f"logs/mask/label_e{epoch}_{i}.pkl","wb")) | |
final_msg = { | |
"epoch": f"EP{epoch}_{str_code}", | |
"avg_loss": avg_loss / len(data_iter), | |
"total_masked_acc": total_correct_mask * 100.0 / total_element_mask | |
} | |
if self.same_student_prediction: | |
final_msg["total_prediction_acc"] = total_correct_pred * 100.0 / total_element_pred | |
print(final_msg) | |
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_masked_acc=", total_correct_mask * 100.0 / total_element_mask, "total_prediction_acc=", total_correct_pred * 100.0 / total_element_pred) | |
# else: | |
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_masked_acc=", total_correct_mask * 100.0 / total_element_mask) | |
# print("EP%d_%s, " % (epoch, str_code)) | |
f.close() | |
sys.stdout = sys.__stdout__ | |
self.save_model = False | |
if self.avg_loss > (avg_loss / len(data_iter)): | |
self.save_model = True | |
self.avg_loss = (avg_loss / len(data_iter)) | |
# pickle.dump(bert_hidden_representations, open(f"embeddings/{code}/{str_code}_embeddings_{epoch}.pkl","wb")) | |
def save(self, epoch, file_path="output/bert_trained.model"): | |
""" | |
Saving the current BERT model on file_path | |
:param epoch: current epoch number | |
:param file_path: model output path which gonna be file_path+"ep%d" % epoch | |
:return: final_output_path | |
""" | |
output_path = file_path + ".ep%d" % epoch | |
torch.save(self.bert.cpu(), output_path) | |
self.bert.to(self.device) | |
print("EP:%d Model Saved on:" % epoch, output_path) | |
return output_path | |
class BERTFineTuneTrainer: | |
def __init__(self, bert: BERT, vocab_size: int, | |
train_dataloader: DataLoader, test_dataloader: DataLoader = None, | |
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000, | |
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, num_labels=2): | |
""" | |
:param bert: BERT model which you want to train | |
:param vocab_size: total word vocab size | |
:param train_dataloader: train dataset data loader | |
:param test_dataloader: test dataset data loader [can be None] | |
:param lr: learning rate of optimizer | |
:param betas: Adam optimizer betas | |
:param weight_decay: Adam optimizer weight decay param | |
:param with_cuda: traning with cuda | |
:param log_freq: logging frequency of the batch iteration | |
""" | |
# Setup cuda device for BERT training, argument -c, --cuda should be true | |
cuda_condition = torch.cuda.is_available() and with_cuda | |
self.device = torch.device("cuda:0" if cuda_condition else "cpu") | |
print("Device used = ", self.device) | |
# This BERT model will be saved every epoch | |
self.bert = bert | |
# for param in self.bert.parameters(): | |
# param.requires_grad = False | |
# Initialize the BERT Language Model, with BERT model | |
self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device) | |
# Distributed GPU training if CUDA can detect more than 1 GPU | |
if with_cuda and torch.cuda.device_count() > 1: | |
print("Using %d GPUS for BERT" % torch.cuda.device_count()) | |
self.model = nn.DataParallel(self.model, device_ids=cuda_devices) | |
# Setting the train and test data loader | |
self.train_data = train_dataloader | |
self.test_data = test_dataloader | |
self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay, eps=1e-9) | |
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) | |
if num_labels == 1: | |
self.criterion = nn.MSELoss() | |
elif num_labels == 2: | |
self.criterion = nn.CrossEntropyLoss() | |
elif num_labels > 2: | |
self.criterion = nn.BCEWithLogitsLoss() | |
self.ece_criterion = ECE().to(self.device) | |
self.log_freq = log_freq | |
self.workspace_name = workspace_name | |
self.save_model = False | |
self.avg_loss = 10000 | |
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()])) | |
def train(self, epoch): | |
self.iteration(epoch, self.train_data) | |
def test(self, epoch): | |
self.iteration(epoch, self.test_data, train=False) | |
def iteration(self, epoch, data_loader, train=True): | |
""" | |
loop over the data_loader for training or testing | |
if on train status, backward operation is activated | |
and also auto save the model every peoch | |
:param epoch: current epoch index | |
:param data_loader: torch.utils.data.DataLoader for iteration | |
:param train: boolean value of is train or test | |
:return: None | |
""" | |
str_code = "train" if train else "test" | |
self.log_file = f"{self.workspace_name}/logs/masked/log_{str_code}_FS_finetuned.txt" | |
if epoch == 0: | |
f = open(self.log_file, 'w') | |
f.close() | |
if not train: | |
self.avg_loss = 10000 | |
# Setting the tqdm progress bar | |
data_iter = tqdm.tqdm(enumerate(data_loader), | |
desc="EP_%s:%d" % (str_code, epoch), | |
total=len(data_loader), | |
bar_format="{l_bar}{r_bar}") | |
avg_loss = 0.0 | |
total_correct = 0 | |
total_element = 0 | |
plabels = [] | |
tlabels = [] | |
eval_accurate_nb = 0 | |
nb_eval_examples = 0 | |
logits_list = [] | |
labels_list = [] | |
if train: | |
self.model.train() | |
else: | |
self.model.eval() | |
with open(self.log_file, 'a') as f: | |
sys.stdout = f | |
for i, data in data_iter: | |
# 0. batch_data will be sent into the device(GPU or cpu) | |
data = {key: value.to(self.device) for key, value in data.items()} | |
if train: | |
h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"]) | |
else: | |
with torch.no_grad(): | |
h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"]) | |
# print(logits, logits.shape) | |
logits_list.append(logits.cpu()) | |
labels_list.append(data["progress_status"].cpu()) | |
# print(">>>>>>>>>>>>", progress_output) | |
# print(f"{epoch}---nelement--- {data['progress_status'].nelement()}") | |
# print(data["progress_status"].shape, logits.shape) | |
progress_loss = self.criterion(logits, data["progress_status"]) | |
loss = progress_loss | |
if torch.cuda.device_count() > 1: | |
loss = loss.mean() | |
# 3. backward and optimization only in train | |
if train: | |
self.optim.zero_grad() | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0) | |
self.optim.step() | |
# progress prediction accuracy | |
# correct = progress_output.argmax(dim=-1).eq(data["progress_status"]).sum().item() | |
probs = nn.LogSoftmax(dim=-1)(logits) | |
predicted_labels = torch.argmax(probs, dim=-1) | |
true_labels = torch.argmax(data["progress_status"], dim=-1) | |
plabels.extend(predicted_labels.cpu().numpy()) | |
tlabels.extend(true_labels.cpu().numpy()) | |
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels) | |
# Compare predicted labels to true labels and calculate accuracy | |
correct = (predicted_labels == true_labels).sum().item() | |
avg_loss += loss.item() | |
total_correct += correct | |
total_element += true_labels.nelement() | |
if train: | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss / (i + 1), | |
"avg_acc": total_correct / total_element * 100, | |
"loss": loss.item() | |
} | |
else: | |
logits = logits.detach().cpu().numpy() | |
label_ids = data["progress_status"].to('cpu').numpy() | |
tmp_eval_nb = accurate_nb(logits, label_ids) | |
eval_accurate_nb += tmp_eval_nb | |
nb_eval_examples += label_ids.shape[0] | |
total_element += data["progress_status"].nelement() | |
# avg_loss += loss.item() | |
post_fix = { | |
"epoch": epoch, | |
"iter": i, | |
"avg_loss": avg_loss / (i + 1), | |
"avg_acc": tmp_eval_nb / total_element * 100, | |
"loss": loss.item() | |
} | |
if i % self.log_freq == 0: | |
data_iter.write(str(post_fix)) | |
# precisions = precision_score(plabels, tlabels, average="weighted") | |
# recalls = recall_score(plabels, tlabels, average="weighted") | |
f1_scores = f1_score(plabels, tlabels, average="weighted") | |
if train: | |
final_msg = { | |
"epoch": f"EP{epoch}_{str_code}", | |
"avg_loss": avg_loss / len(data_iter), | |
"total_acc": total_correct * 100.0 / total_element, | |
# "precisions": precisions, | |
# "recalls": recalls, | |
"f1_scores": f1_scores | |
} | |
else: | |
eval_accuracy = eval_accurate_nb/nb_eval_examples | |
logits_ece = torch.cat(logits_list) | |
labels_ece = torch.cat(labels_list) | |
ece = self.ece_criterion(logits_ece, labels_ece).item() | |
final_msg = { | |
"epoch": f"EP{epoch}_{str_code}", | |
"eval_accuracy": eval_accuracy, | |
"ece": ece, | |
"avg_loss": avg_loss / len(data_iter), | |
# "precisions": precisions, | |
# "recalls": recalls, | |
"f1_scores": f1_scores | |
} | |
if self.save_model: | |
conf_hist = visualization.ConfidenceHistogram() | |
plt_test = conf_hist.plot(np.array(logits_ece), np.array(labels_ece), title= f"Confidence Histogram {epoch}") | |
plt_test.savefig(f"{self.workspace_name}/plots/confidence_histogram/FS/conf_histogram_test_{epoch}.png",bbox_inches='tight') | |
plt_test.close() | |
rel_diagram = visualization.ReliabilityDiagram() | |
plt_test_2 = rel_diagram.plot(np.array(logits_ece), np.array(labels_ece),title=f"Reliability Diagram {epoch}") | |
plt_test_2.savefig(f"{self.workspace_name}/plots/confidence_histogram/FS/rel_diagram_test_{epoch}.png",bbox_inches='tight') | |
plt_test_2.close() | |
print(final_msg) | |
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element) | |
f.close() | |
sys.stdout = sys.__stdout__ | |
if train: | |
self.save_model = False | |
if self.avg_loss > (avg_loss / len(data_iter)): | |
self.save_model = True | |
self.avg_loss = (avg_loss / len(data_iter)) | |
# plt_test.show() | |
# print("EP%d_%s, " % (epoch, str_code)) | |
def save(self, epoch, file_path="output/bert_fine_tuned_trained.model"): | |
""" | |
Saving the current BERT model on file_path | |
:param epoch: current epoch number | |
:param file_path: model output path which gonna be file_path+"ep%d" % epoch | |
:return: final_output_path | |
""" | |
output_path = file_path + ".ep%d" % epoch | |
torch.save(self.model.cpu(), output_path) | |
self.model.to(self.device) | |
print("EP:%d Model Saved on:" % epoch, output_path) | |
return output_path | |