|
import numpy as np |
|
from scipy.special import softmax |
|
|
|
|
|
class CELoss(object): |
|
|
|
def compute_bin_boundaries(self, probabilities = np.array([])): |
|
|
|
|
|
if probabilities.size == 0: |
|
bin_boundaries = np.linspace(0, 1, self.n_bins + 1) |
|
self.bin_lowers = bin_boundaries[:-1] |
|
self.bin_uppers = bin_boundaries[1:] |
|
else: |
|
|
|
bin_n = int(self.n_data/self.n_bins) |
|
|
|
bin_boundaries = np.array([]) |
|
|
|
probabilities_sort = np.sort(probabilities) |
|
|
|
for i in range(0,self.n_bins): |
|
bin_boundaries = np.append(bin_boundaries,probabilities_sort[i*bin_n]) |
|
bin_boundaries = np.append(bin_boundaries,1.0) |
|
|
|
self.bin_lowers = bin_boundaries[:-1] |
|
self.bin_uppers = bin_boundaries[1:] |
|
|
|
|
|
def get_probabilities(self, output, labels, logits): |
|
|
|
if logits: |
|
self.probabilities = softmax(output, axis=1) |
|
else: |
|
self.probabilities = output |
|
|
|
self.labels = labels |
|
self.confidences = np.max(self.probabilities, axis=1) |
|
self.predictions = np.argmax(self.probabilities, axis=1) |
|
self.accuracies = np.equal(self.predictions,labels) |
|
|
|
def binary_matrices(self): |
|
idx = np.arange(self.n_data) |
|
|
|
pred_matrix = np.zeros([self.n_data,self.n_class]) |
|
label_matrix = np.zeros([self.n_data,self.n_class]) |
|
|
|
pred_matrix[idx,self.predictions] = 1 |
|
label_matrix[idx,self.labels] = 1 |
|
|
|
self.acc_matrix = np.equal(pred_matrix, label_matrix) |
|
|
|
|
|
def compute_bins(self, index = None): |
|
self.bin_prop = np.zeros(self.n_bins) |
|
self.bin_acc = np.zeros(self.n_bins) |
|
self.bin_conf = np.zeros(self.n_bins) |
|
self.bin_score = np.zeros(self.n_bins) |
|
|
|
if index == None: |
|
confidences = self.confidences |
|
accuracies = self.accuracies |
|
else: |
|
confidences = self.probabilities[:,index] |
|
accuracies = self.acc_matrix[:,index] |
|
|
|
|
|
for i, (bin_lower, bin_upper) in enumerate(zip(self.bin_lowers, self.bin_uppers)): |
|
|
|
in_bin = np.greater(confidences,bin_lower.item()) * np.less_equal(confidences,bin_upper.item()) |
|
self.bin_prop[i] = np.mean(in_bin) |
|
|
|
if self.bin_prop[i].item() > 0: |
|
self.bin_acc[i] = np.mean(accuracies[in_bin]) |
|
self.bin_conf[i] = np.mean(confidences[in_bin]) |
|
self.bin_score[i] = np.abs(self.bin_conf[i] - self.bin_acc[i]) |
|
|
|
class MaxProbCELoss(CELoss): |
|
def loss(self, output, labels, n_bins = 15, logits = True): |
|
self.n_bins = n_bins |
|
super().compute_bin_boundaries() |
|
super().get_probabilities(output, labels, logits) |
|
super().compute_bins() |
|
|
|
|
|
class ECELoss(MaxProbCELoss): |
|
|
|
def loss(self, output, labels, n_bins = 15, logits = True): |
|
super().loss(output, labels, n_bins, logits) |
|
return np.dot(self.bin_prop,self.bin_score) |
|
|
|
class MCELoss(MaxProbCELoss): |
|
|
|
def loss(self, output, labels, n_bins = 15, logits = True): |
|
super().loss(output, labels, n_bins, logits) |
|
return np.max(self.bin_score) |
|
|
|
|
|
|
|
class OELoss(MaxProbCELoss): |
|
|
|
def loss(self, output, labels, n_bins = 15, logits = True): |
|
super().loss(output, labels, n_bins, logits) |
|
return np.dot(self.bin_prop,self.bin_conf * np.maximum(self.bin_conf-self.bin_acc,np.zeros(self.n_bins))) |
|
|
|
|
|
|
|
class SCELoss(CELoss): |
|
|
|
def loss(self, output, labels, n_bins = 15, logits = True): |
|
sce = 0.0 |
|
self.n_bins = n_bins |
|
self.n_data = len(output) |
|
self.n_class = len(output[0]) |
|
|
|
super().compute_bin_boundaries() |
|
super().get_probabilities(output, labels, logits) |
|
super().binary_matrices() |
|
|
|
for i in range(self.n_class): |
|
super().compute_bins(i) |
|
sce += np.dot(self.bin_prop,self.bin_score) |
|
|
|
return sce/self.n_class |
|
|
|
class TACELoss(CELoss): |
|
|
|
def loss(self, output, labels, threshold = 0.01, n_bins = 15, logits = True): |
|
tace = 0.0 |
|
self.n_bins = n_bins |
|
self.n_data = len(output) |
|
self.n_class = len(output[0]) |
|
|
|
super().get_probabilities(output, labels, logits) |
|
self.probabilities[self.probabilities < threshold] = 0 |
|
super().binary_matrices() |
|
|
|
for i in range(self.n_class): |
|
super().compute_bin_boundaries(self.probabilities[:,i]) |
|
super().compute_bins(i) |
|
tace += np.dot(self.bin_prop,self.bin_score) |
|
|
|
return tace/self.n_class |
|
|
|
|
|
class ACELoss(TACELoss): |
|
|
|
def loss(self, output, labels, n_bins = 15, logits = True): |
|
return super().loss(output, labels, 0.0 , n_bins, logits) |
|
|