ColorFlow / colorflow_cli.py
svjack's picture
Create colorflow_cli.py
2efc095 verified
'''
python colorflow_cli.py \
--input_image ./input.jpg \
--reference_images ./ref1.jpg ./ref2.jpg \
--output_dir ./results \
--input_style Sketch \
--resolution 640x640 \
--seed 123 \
--num_inference_steps 20
'''
# colorflow_cli.py
from app_func import *
import argparse
import torch
from PIL import Image
import os
import logging
# 原文件中的必要导入和函数定义(需保留原文件中的核心逻辑)
# ... [保留原文件中的模型加载、extract_line_image、colorize_image等函数] ...
def parse_args():
parser = argparse.ArgumentParser(description="ColorFlow命令行图像上色工具")
parser.add_argument("--input_image", type=str, required=True, help="输入图像路径")
parser.add_argument("--reference_images", type=str, nargs='+', required=True, help="参考图像路径列表")
parser.add_argument("--output_dir", type=str, default="./output", help="输出目录")
parser.add_argument("--input_style", type=str, default="GrayImage(ScreenStyle)",
choices=["GrayImage(ScreenStyle)", "Sketch"], help="输入样式类型")
parser.add_argument("--resolution", type=str, default="640x640",
choices=["640x640", "512x800", "800x512"], help="分辨率设置")
parser.add_argument("--seed", type=int, default=0, help="随机种子")
parser.add_argument("--num_inference_steps", type=int, default=10, help="推理步数")
return parser.parse_args()
def save_image(image: Image.Image, path: str, format: str = "PNG") -> None:
"""安全保存图像并处理异常"""
try:
image.save(path, format=format)
logging.info(f"成功保存图像至: {path}")
except Exception as e:
logging.error(f"保存图像失败: {str(e)}")
raise
def main():
args = parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# 初始化模型
global cur_input_style, pipeline, MultiResNetModel
cur_input_style = None
load_ckpt(args.input_style)
# 预处理输入图像
input_img = Image.open(args.input_image).convert("RGB")
input_context, extracted_line, _ = extract_line_image(input_img, args.input_style, args.resolution)
# 执行颜色化并获取全部结果
high_res_img, up_img, raw_output, preprocessed_bw = colorize_image(
VAE_input=extracted_line,
input_context=input_context,
reference_images=args.reference_images,
resolution=args.resolution,
seed=args.seed,
input_style=args.input_style,
num_inference_steps=args.num_inference_steps
)
# 保存所有结果
save_image(high_res_img, os.path.join(args.output_dir, "colorized_result.png"))
save_image(up_img, os.path.join(args.output_dir, "upsampled_intermediate.png"))
save_image(raw_output, os.path.join(args.output_dir, "raw_generated_output.png"))
save_image(preprocessed_bw, os.path.join(args.output_dir, "preprocessed_bw.png"))
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
main()