Spaces:
Runtime error
Runtime error
File size: 18,518 Bytes
6e86f38 6d0f4f4 6e86f38 a8f5e53 6e86f38 a8f5e53 6e86f38 6f6f4a0 6e86f38 a8f5e53 6e86f38 a8f5e53 6e86f38 a8f5e53 6e86f38 a8f5e53 6e86f38 a8f5e53 6e86f38 9ee1495 6e86f38 9ee1495 6e86f38 9ee1495 6e86f38 a8f5e53 6e86f38 cd03317 6e86f38 a8f5e53 cd03317 6e86f38 cd03317 6e86f38 a8f5e53 6e86f38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import os
import tensorflow as tf
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
import numpy as np
import PIL.Image
import gradio as gr
import tensorflow_hub as hub
import matplotlib.pyplot as plt
import gradio as gr
import requests
import io
import random
import os
from PIL import Image, ImageDraw, ImageFont
from datasets import load_dataset
import pandas as pd
from time import sleep
from tqdm import tqdm
import extcolors
from gradio_client import Client
import cv2
import numpy as np
import glob
import pathlib
API_TOKEN = os.environ.get("HF_READ_TOKEN")
DEFAULT_PROMPT = "X go to Istanbul"
DEFAULT_ROLE = "Superman"
DEFAULT_BOOK_COVER = "book_cover_dir/Blank.png"
hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
def perform_neural_transfer(content_image_input, style_image_input, hub_module = hub_module):
content_image = content_image_input.astype(np.float32)[np.newaxis, ...] / 255.
content_image = tf.image.resize(content_image, (400, 600))
style_image = style_image_input.astype(np.float32)[np.newaxis, ...] / 255.
style_image = tf.image.resize(style_image, (256, 256))
outputs = hub_module(tf.constant(content_image), tf.constant(style_image))
stylized_image = outputs[0]
stylized_image = tensor_to_image(stylized_image)
content_image_input = tensor_to_image(content_image_input)
stylized_image = stylized_image.resize(content_image_input.size)
return stylized_image
list_models = [
"Pixel-Art-XL",
"SD-1.5",
"OpenJourney-V4",
"Anything-V4",
"Disney-Pixar-Cartoon",
"Dalle-3-XL",
]
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
seed=None, API_TOKEN = API_TOKEN):
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
#API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if type(prompt) != type(""):
prompt = DEFAULT_PROMPT
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
from huggingface_hub import InferenceClient
import gradio as gr
import pandas as pd
import numpy as np
import os
event_reasoning_df = pd.DataFrame(
[['Use the following events as a background to answer questions related to the cause and effect of time.', 'Ok'],
['What are the necessary preconditions for the next event?:X had a big meal.', 'X placed an order'],
['What could happen after the next event?:X had a big meal.', 'X becomes fat'],
['What is the motivation for the next event?:X had a big meal.', 'X is hungry'],
['What are your feelings after the following event?:X had a big meal.', "X tastes good"],
['What are the necessary preconditions for the next event?:X met his favorite star.', 'X bought a ticket'],
['What could happen after the next event?:X met his favorite star.', 'X is motivated'],
['What is the motivation for the next event?:X met his favorite star.', 'X wants to have some entertainment'],
['What are your feelings after the following event?:X met his favorite star.', "X is in a happy mood"],
['What are the necessary preconditions for the next event?: X to cheat', 'X has evil intentions'],
['What could happen after the next event?:X to cheat', 'X is accused'],
['What is the motivation for the next event?:X to cheat', 'X wants to get something for nothing'],
['What are your feelings after the following event?:X to cheat', "X is starving and freezing in prison"],
['What could happen after the next event?:X go to Istanbul', ''],
],
columns = ["User", "Assistant"]
)
Mistral_7B_client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
NEED_PREFIX = 'What are the necessary preconditions for the next event?'
EFFECT_PREFIX = 'What could happen after the next event?'
INTENT_PREFIX = 'What is the motivation for the next event?'
REACT_PREFIX = 'What are your feelings after the following event?'
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, client = Mistral_7B_client,
temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
hist = event_reasoning_df.iloc[:-1, :].apply(
lambda x: (x["User"], x["Assistant"]), axis = 1
)
def produce_4_event(event_fact, hist = hist):
NEED_PREFIX_prompt = "{}:{}".format(NEED_PREFIX, event_fact)
EFFECT_PREFIX_prompt = "{}:{}".format(EFFECT_PREFIX, event_fact)
INTENT_PREFIX_prompt = "{}:{}".format(INTENT_PREFIX, event_fact)
REACT_PREFIX_prompt = "{}:{}".format(REACT_PREFIX, event_fact)
NEED_PREFIX_output = list(generate(NEED_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
EFFECT_PREFIX_output = list(generate(EFFECT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
INTENT_PREFIX_output = list(generate(INTENT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
REACT_PREFIX_output = list(generate(REACT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output = map(lambda x: x.replace("</s>", ""), [NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output])
return {
NEED_PREFIX: NEED_PREFIX_output,
EFFECT_PREFIX: EFFECT_PREFIX_output,
INTENT_PREFIX: INTENT_PREFIX_output,
REACT_PREFIX: REACT_PREFIX_output,
}
def transform_4_event_as_sd_prompts(event_fact ,event_reasoning_dict, role_name = "superman"):
req = {}
for k, v in event_reasoning_dict.items():
if type(role_name) == type("") and role_name.strip():
v_ = v.replace("X", role_name)
else:
v_ = v
req[k] = list(generate("Transform this as a prompt in stable diffusion: {}".\
format(v_),
history = [], max_new_tokens = 2048))[-1].replace("</s>", "")
event_fact_ = event_fact.replace("X", role_name)
req["EVENT_FACT"] = list(generate("Transform this as a prompt in stable diffusion: {}".\
format(event_fact_),
history = [], max_new_tokens = 2048))[-1].replace("</s>", "")
req_list = [
req[INTENT_PREFIX], req[NEED_PREFIX],
req["EVENT_FACT"],
req[REACT_PREFIX], req[EFFECT_PREFIX]
]
caption_list = [
event_reasoning_dict[INTENT_PREFIX], event_reasoning_dict[NEED_PREFIX],
event_fact,
event_reasoning_dict[REACT_PREFIX], event_reasoning_dict[EFFECT_PREFIX]
]
caption_list = list(map(lambda x: x.replace("X", role_name), caption_list))
return caption_list ,req_list
def batch_as_list(input_, batch_size = 3):
req = []
for ele in input_:
if not req or len(req[-1]) >= batch_size:
req.append([ele])
else:
req[-1].append(ele)
return req
def add_margin(pil_img, top, right, bottom, left, color):
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def add_caption_on_image(input_image, caption, marg_ratio = 0.15, row_token_num = 6):
from uuid import uuid1
assert hasattr(input_image, "save")
max_image_size = max(input_image.size)
marg_size = int(marg_ratio * max_image_size)
colors, pixel_count = extcolors.extract_from_image(input_image)
input_image = add_margin(input_image, marg_size, 0, 0, marg_size, colors[0][0])
font = ImageFont.truetype("DejaVuSerif-Italic.ttf" ,int(marg_size / 4))
caption_token_list = list(map(lambda x: x.strip() ,caption.split(" ")))
caption_list = list(map(" ".join ,batch_as_list(caption_token_list, row_token_num)))
draw = ImageDraw.Draw(input_image)
for line_num ,line_caption in enumerate(caption_list):
position = (
int(marg_size / 4) * (line_num + 1) * 1.1 ,
(int(marg_size / 4) * (
(line_num + 1) * 1.1
)))
draw.text(position, line_caption, fill="black", font = font)
return input_image
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height)))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width)))
return result
def generate_video(images, video_name = 'ppt.avi'):
import cv2
from uuid import uuid1
im_names = []
for im in images:
name = "{}.png".format(uuid1())
im.save(name)
im_names.append(name)
frame = cv2.imread(im_names[0])
# setting the frame width, height width
# the width, height of first image
height, width, layers = frame.shape
video = cv2.VideoWriter(video_name, 0, 1, (width, height))
# Appending the images to the video one by one
for name in im_names:
video.write(cv2.imread(name))
os.remove(name)
# Deallocating memories taken for window creation
#cv2.destroyAllWindows()
video.release() # releasing the video generated
def make_video_from_image_list(image_list, video_name = "ppt.avi"):
if os.path.exists(video_name):
os.remove(video_name)
assert all(map(lambda x: hasattr(x, "save"), image_list))
max_size = list(map(max ,zip(*map(lambda x: x.size, image_list))))
max_size = max(max_size)
image_list = list(map(lambda x: expand2square(x,
extcolors.extract_from_image(x)[0][0][0]
).resize((max_size, max_size)), image_list))
generate_video(image_list, video_name = video_name)
return video_name
def style_transfer_func(content_img, style_img):
assert hasattr(content_img, "save")
assert hasattr(style_img, "save")
colors, pixel_count = extcolors.extract_from_image(style_img)
if colors and colors[0][0] == (255, 255, 255) and (colors[0][1] / sum(map(lambda t2: t2[1] ,colors)) > 0.95):
return content_img
content_image_input = np.asarray(content_img)
style_image_input = np.asarray(style_img)
out = perform_neural_transfer(content_image_input, style_image_input)
assert hasattr(out, "save")
return out
def gen_images_from_event_fact(current_model, event_fact = DEFAULT_PROMPT, role_name = DEFAULT_ROLE,
style_pic = None
):
event_reasoning_dict = produce_4_event(event_fact)
caption_list ,event_reasoning_sd_list = transform_4_event_as_sd_prompts(event_fact ,
event_reasoning_dict,
role_name = role_name
)
img_list = []
for prompt in tqdm(event_reasoning_sd_list):
im = generate_txt2img(current_model, prompt, is_negative=False, image_style="None style")
img_list.append(im)
sleep(2)
img_list = list(filter(lambda x: hasattr(x, "save"), img_list))
if style_pic is not None and hasattr(style_pic, "size"):
style_pic = Image.fromarray(style_pic.astype(np.uint8))
print("perform styling.....")
img_list_ = []
for x in tqdm(img_list):
img_list_.append(style_transfer_func(x, style_pic))
img_list = img_list_
img_list = list(map(lambda t2: add_caption_on_image(t2[0], t2[1]) ,zip(*[img_list, caption_list])))
img_mid = img_list[2]
img_list_reordered = [img_mid]
for ele in img_list:
if ele not in img_list_reordered:
img_list_reordered.append(ele)
video_path = make_video_from_image_list(img_list_reordered)
return video_path
def image_click(images, evt: gr.SelectData,
):
img_selected = images[evt.index][0]["name"]
return img_selected
def get_book_covers():
covers = pd.Series(
list(pathlib.Path("book_cover_dir").rglob("*.jpg")) + \
list(pathlib.Path("book_cover_dir").rglob("*.png")) + \
list(pathlib.Path("book_cover_dir").rglob("*.jpeg"))
).map(str).map(lambda x: np.nan if x.split("/")[-1].startswith("_") else x).dropna().map(
lambda x: (x, "".join(x.split(".")[:-1]).split("/")[-1])
).values.tolist()
covers = sorted(covers, key = lambda t2: int(DEFAULT_BOOK_COVER in t2[0]), reverse = True)
return covers
with gr.Blocks(css=".caption-label {display:none}") as demo:
favicon = '<img src="" width="48px" style="display: inline">'
gr.Markdown(
f"""<h1><center> 🎥💬 Comet Atomic Story Teller</center></h1>
"""
)
with gr.Row():
with gr.Column(elem_id="prompt-container"):
current_model = gr.Dropdown(label="Current Model", choices=list_models, value="Pixel-Art-XL")
style_reference_input_gallery = gr.Gallery(get_book_covers(),
height = 768 + 64 + 32,
label = "StoryBook Cover (click to use)",
object_fit = "contain"
)
with gr.Column(elem_id="prompt-container"):
style_reference_input_image = gr.Image(
label = "StoryBook Cover (you can upload yourself or click from left gallery)",
value = DEFAULT_BOOK_COVER,
interactive = True,
)
with gr.Row():
text_prompt = gr.Textbox(label="Event Prompt", placeholder=DEFAULT_PROMPT,
lines=1, elem_id="prompt-text-input", value = DEFAULT_PROMPT,
info = "You should set the prompt in format 'X do something', X is the role in the right."
)
role_name = gr.Textbox(label="Role (X)", placeholder=DEFAULT_ROLE, lines=1,
elem_id="prompt-text-input", value = DEFAULT_ROLE,
info = "You should set the Role (X) with some famous man (like: Confucius Superman)"
)
with gr.Row():
text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")
with gr.Row():
video_output = gr.Video(label = "Story Video", elem_id="gallery", height = 512,)
style_reference_input_gallery.select(
image_click, style_reference_input_gallery, style_reference_input_image
)
text_button.click(gen_images_from_event_fact, inputs=[current_model, text_prompt, role_name, style_reference_input_image],
outputs=video_output)
demo.launch(show_api=False)
|