Spaces:
Sleeping
Sleeping
File size: 8,884 Bytes
e87d958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import spaces
import os
import time
import json
import numpy as np
import av
import torch
from PIL import Image
import functools
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
from models.conversation import conv_templates
from typing import List
processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-refined-40k_4096_generation")
model = Idefics2ForConditionalGeneration.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-refined-40k_4096_generation", device_map="auto", torch_dtype=torch.bfloat16).eval()
MAX_NUM_FRAMES = 24
conv_template = conv_templates["idefics_2"]
with open("./examples/all_subsets.json", 'r') as f:
examples = json.load(f)
for item in examples:
video_id = item['images'][0].split("_")[0]
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
item['video'] = os.path.join("./examples", item['video'])
with open("./examples/hd.json", 'r') as f:
hd_examples = json.load(f)
for item in hd_examples:
item['video'] = os.path.join("./examples", item['video'])
examples = hd_examples + examples
VIDEO_EVAL_PROMPT = """
Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
please watch the following frames of a given video and see the text prompt for generating the video,
then give scores from 5 different dimensions:
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
(2) temporal consistency, the consistency of objects or humans in video
(3) dynamic degree, the degree of dynamic changes
(4) text-to-video alignment, the alignment between the text prompt and the video content
(5) factual consistency, the consistency of the video content with the common-sense and factual knowledge
For each dimension, output a number from [1,2,3,4],
in which '1' means 'Bad', '2' means 'Average', '3' means 'Good',
'4' means 'Real' or 'Perfect' (the video is like a real video)
Here is an output example:
visual quality: 4
temporal consistency: 4
dynamic degree: 3
text-to-video alignment: 1
factual consistency: 2
For this video, the text prompt is "{text_prompt}",
all the frames of video are as follows:
"""
@spaces.GPU(duration=60)
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
model.to("cuda")
if not images:
images = None
user_role = conv_template.roles[0]
assistant_role = conv_template.roles[1]
idefics_2_message = []
cur_img_idx = 0
cur_vid_idx = 0
all_videos = [x for x in images if isinstance(x, list)]
flatten_images = []
for x in images:
if isinstance(x, list):
flatten_images.extend(x)
else:
flatten_images.append(x)
print(history)
for i, message in enumerate(history):
if message["role"] == user_role:
idefics_2_message.append({
"role": user_role,
"content": []
})
message_text = message["text"]
num_video_tokens_in_text = message_text.count("<video>")
if num_video_tokens_in_text > 0:
for _ in range(num_video_tokens_in_text):
message_text = message_text.replace("<video>", "<image> " * len(all_videos[cur_vid_idx]), 1)
cur_vid_idx += 1
num_image_tokens_in_text = message_text.count("<image>")
if num_image_tokens_in_text > 0:
sub_texts = [x.strip() for x in message_text.split("<image>")]
if sub_texts[0]:
idefics_2_message[-1]["content"].append({"type": "text", "text": sub_texts[0]})
for sub_text in sub_texts[1:]:
idefics_2_message[-1]["content"].append({"type": "image"})
if sub_text:
idefics_2_message.append({
"role": user_role,
"content": [{"type": "text", "text": sub_text}]
})
else:
idefics_2_message[-1]["content"].append({"type": "text", "text": message_text})
elif message["role"] == assistant_role:
if i == len(history) - 1 and not message["text"]:
break
idefics_2_message.append({
"role": assistant_role,
"content": [{"type": "text", "text": message["text"]}]
})
if text:
assert idefics_2_message[-1]["role"] == assistant_role and not idefics_2_message[-1]["content"], "Internal error"
idefics_2_message.append({
"role": user_role,
"content": [{"type": "text", "text": text}]
})
print(idefics_2_message)
prompt = processor.apply_chat_template(idefics_2_message, add_generation_prompt=True)
images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(**inputs, max_new_tokens=1024)
generated_text = processor.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
return generated_text
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (av.container.input.InputContainer): PyAV container.
indices (List[int]): List of frame indices to decode.
Returns:
np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def eval_video(prompt, video:str):
container = av.open(video)
# sample uniformly 8 frames from the video
total_frames = container.streams.video[0].frames
if total_frames > MAX_NUM_FRAMES:
indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
else:
indices = np.arange(total_frames)
video_frames = read_video_pyav(container, indices)
frames = [Image.fromarray(x) for x in video_frames]
eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt)
eval_prompt += "<video>"
user_role = conv_template.roles[0]
assistant_role = conv_template.roles[1]
chat_messages = [
{
"role": user_role,
"text": eval_prompt
},
{
"role": assistant_role,
"text": ""
}
]
response = generate(None, [frames], chat_messages)
return response
def build_demo():
with gr.Blocks() as demo:
gr.Markdown("""
## Video Evaluation
upload a video along with a text prompt when generating the video, this model will evaluate the video's quality from 7 different dimensions.
""")
with gr.Row():
video = gr.Video(width=500, label="Video")
with gr.Column():
eval_prompt_template = gr.Textbox(VIDEO_EVAL_PROMPT.strip(' \n'), label="Evaluation Prompt Template", interactive=False, max_lines=26)
video_prompt = gr.Textbox(label="Text Prompt", lines=1)
with gr.Row():
eval_button = gr.Button("Evaluate Video")
clear_button = gr.ClearButton([video, video_prompt])
eval_result = gr.Textbox(label="Evaluation result", interactive=False, lines=7)
eval_button.click(
eval_video, [video_prompt, video], [eval_result]
)
dummy_id = gr.Textbox("id", label="id", visible=False, min_width=50)
dummy_output = gr.Textbox("reference score", label="reference scores", visible=False, lines=7)
gr.Examples(
examples=
[
[
item['id'],
item['prompt'],
item['video'],
item['conversations'][1]['value']
] for item in examples
],
inputs=[dummy_id, video_prompt, video, dummy_output],
)
# gr.Markdown("""
# ## Citation
# ```
# @article{jiang2024mantis,
# title={MANTIS: Interleaved Multi-Image Instruction Tuning},
# author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
# journal={arXiv preprint arXiv:2405.01483},
# year={2024}
# }
# ```""")
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch(share=True) |