Spaces:
Running
Running
File size: 38,219 Bytes
e87d958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: 'path/to/your/images'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[1], line 31\u001b[0m\n\u001b[1;32m 28\u001b[0m output_video \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124moutput_video.mp4\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 29\u001b[0m frame_rate \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m30\u001b[39m \u001b[38;5;66;03m# Frames per second\u001b[39;00m\n\u001b[0;32m---> 31\u001b[0m \u001b[43mcreate_video_from_frames\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_directory\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moutput_video\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mframe_rate\u001b[49m\u001b[43m)\u001b[49m\n",
"Cell \u001b[0;32mIn[1], line 6\u001b[0m, in \u001b[0;36mcreate_video_from_frames\u001b[0;34m(input_dir, output_file, frame_rate)\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_video_from_frames\u001b[39m(input_dir, output_file, frame_rate):\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Get all image files from the input directory\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m images \u001b[38;5;241m=\u001b[39m [img \u001b[38;5;28;01mfor\u001b[39;00m img \u001b[38;5;129;01min\u001b[39;00m \u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlistdir\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_dir\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mif\u001b[39;00m img\u001b[38;5;241m.\u001b[39mendswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m.png\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m img\u001b[38;5;241m.\u001b[39mendswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m.jpg\u001b[39m\u001b[38;5;124m\"\u001b[39m)]\n\u001b[1;32m 7\u001b[0m images\u001b[38;5;241m.\u001b[39msort() \u001b[38;5;66;03m# Ensure the images are sorted\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Read the first image to get the dimensions\u001b[39;00m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'path/to/your/images'"
]
}
],
"source": [
"import cv2\n",
"import os\n",
"\n",
"def create_video_from_frames(input_dir, output_file, frame_rate):\n",
" # Get all image files from the input directory\n",
" images = [img for img in os.listdir(input_dir) if img.endswith(\".png\") or img.endswith(\".jpg\")]\n",
" images.sort() # Ensure the images are sorted\n",
"\n",
" # Read the first image to get the dimensions\n",
" frame = cv2.imread(os.path.join(input_dir, images[0]))\n",
" height, width, layers = frame.shape\n",
"\n",
" # Initialize the video writer\n",
" fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 file\n",
" video = cv2.VideoWriter(output_file, fourcc, frame_rate, (width, height))\n",
"\n",
" # Write each image to the video\n",
" for image in images:\n",
" img_path = os.path.join(input_dir, image)\n",
" frame = cv2.imread(img_path)\n",
" video.write(frame)\n",
"\n",
" # Release the video writer\n",
" video.release()\n",
"\n",
"# Example usage\n",
"input_directory = 'path/to/your/images'\n",
"output_video = 'output_video.mp4'\n",
"frame_rate = 30 # Frames per second\n",
"\n",
"create_video_from_frames(input_directory, output_video, frame_rate)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"with open(\"./all_subsets.json\", 'r') as f:\n",
" examples = json.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(examples)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'r003679_00.jpg'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"examples[0]['images'][0]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dog rolls over and falls off couch\n",
"Created video for r003679\n",
"A young man is standing in front of a glacier with mountains in the background.\n",
"Created video for r100916\n",
"a man wearing a striped blanket over his backpack runs behind two other men.\n",
"Created video for r004061\n",
"After a few years, Ghulam Muhammad became the owner of his business \n",
"Created video for b404675\n",
"view down to the path in the field, moving forward, night, dark. \n",
"Created video for b402727\n",
"Old Philippino man, close up, subtle smile, teats of joy, in old wood room \n",
"Created video for b304986\n",
"write y in the garden with flowers \n",
"Created video for d500937\n",
"a boy paiting a beautiful landscape \n",
"Created video for d500506\n",
"sneaker with exclusive design worth 1 billion \n",
"Created video for d401950\n",
":sci fi war in the moon \n",
"Created video for a500251\n",
"for a dog accessories brand a welcome image: brand name: hot doggies \n",
"Created video for a400480\n",
"a druid in the forest cinematic \n",
"Created video for a500010\n",
"a robot vacuum traveling through southeast asian countries \n",
"Created video for 3005033\n",
"jiaxuan is the most beautiful ,elegant,charming girl in the world. billions of boys fell in love with her \n",
"Created video for 7004180\n",
"scary halloween skeletons are having a conversation with each other \n",
"Created video for 1006309\n"
]
}
],
"source": [
"\n",
"import os\n",
"import cv2\n",
"import regex as re\n",
"import shutil\n",
"for item in examples:\n",
" video_id = item['images'][0].split(\"_\")[0]\n",
" images = [os.path.join(video_id, x) for x in item['images']]\n",
" output_file = f\"{video_id}.mp4\"\n",
" frame = cv2.imread(images[0])\n",
" if frame is None:\n",
" print(f\"Skipping {video_id}\")\n",
" continue\n",
" height, width, layers = frame.shape\n",
" item['video'] = output_file\n",
" \n",
" pattern = r'(?<=For this item, the text prompt is ).+(?=,)'\n",
" prompt = re.findall(pattern, item['conversations'][0]['value'])[0]\n",
" print(prompt)\n",
" item['prompt'] = prompt.strip()\n",
" \n",
" # Initialize the video writer\n",
" fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 file|\n",
" # fourcc = cv2.VideoWriter_fourcc(*'avc3') # Codec for .mp4 file|\n",
" frame_rate = 8\n",
" video = cv2.VideoWriter(output_file, fourcc, frame_rate, (width, height))\n",
"\n",
" # Write each image to the video\n",
" for image in images:\n",
" frame = cv2.imread(image)\n",
" video.write(frame)\n",
" print(f\"Created video for {video_id}\")\n",
" \n",
" # shutil.rmtree(video_id)\n",
"\n",
" # Release the video writer\n",
" video.release()\n",
" # break\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"with open(\"./all_subsets.json\", 'w') as f:\n",
" json.dump(examples, f, indent=4)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'id': 'real_r003679',\n",
" 'images': ['r003679_00.jpg',\n",
" 'r003679_01.jpg',\n",
" 'r003679_02.jpg',\n",
" 'r003679_03.jpg',\n",
" 'r003679_04.jpg',\n",
" 'r003679_05.jpg',\n",
" 'r003679_06.jpg',\n",
" 'r003679_07.jpg',\n",
" 'r003679_08.jpg',\n",
" 'r003679_09.jpg',\n",
" 'r003679_10.jpg',\n",
" 'r003679_11.jpg',\n",
" 'r003679_12.jpg',\n",
" 'r003679_13.jpg',\n",
" 'r003679_14.jpg',\n",
" 'r003679_15.jpg',\n",
" 'r003679_16.jpg',\n",
" 'r003679_17.jpg',\n",
" 'r003679_18.jpg',\n",
" 'r003679_19.jpg',\n",
" 'r003679_20.jpg',\n",
" 'r003679_21.jpg',\n",
" 'r003679_22.jpg',\n",
" 'r003679_23.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is dog rolls over and falls off couch,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 3\\n object consistency: 3\\n dynamic degree: 3\\n motion smoothness: 3\\n text-to-video alignment: 3\\n factual consistency: 3\\n overall score: 3\\n'}]},\n",
" {'id': 'real_r100916',\n",
" 'images': ['r100916_00.jpg',\n",
" 'r100916_01.jpg',\n",
" 'r100916_02.jpg',\n",
" 'r100916_03.jpg',\n",
" 'r100916_04.jpg',\n",
" 'r100916_05.jpg',\n",
" 'r100916_06.jpg',\n",
" 'r100916_07.jpg',\n",
" 'r100916_08.jpg',\n",
" 'r100916_09.jpg',\n",
" 'r100916_10.jpg',\n",
" 'r100916_11.jpg',\n",
" 'r100916_12.jpg',\n",
" 'r100916_13.jpg',\n",
" 'r100916_14.jpg',\n",
" 'r100916_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is A young man is standing in front of a glacier with mountains in the background.,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 3\\n object consistency: 3\\n dynamic degree: 3\\n motion smoothness: 3\\n text-to-video alignment: 3\\n factual consistency: 3\\n overall score: 3\\n'}]},\n",
" {'id': 'real_r004061',\n",
" 'images': ['r004061_00.jpg',\n",
" 'r004061_01.jpg',\n",
" 'r004061_02.jpg',\n",
" 'r004061_03.jpg',\n",
" 'r004061_04.jpg',\n",
" 'r004061_05.jpg',\n",
" 'r004061_06.jpg',\n",
" 'r004061_07.jpg',\n",
" 'r004061_08.jpg',\n",
" 'r004061_09.jpg',\n",
" 'r004061_10.jpg',\n",
" 'r004061_11.jpg',\n",
" 'r004061_12.jpg',\n",
" 'r004061_13.jpg',\n",
" 'r004061_14.jpg',\n",
" 'r004061_15.jpg',\n",
" 'r004061_16.jpg',\n",
" 'r004061_17.jpg',\n",
" 'r004061_18.jpg',\n",
" 'r004061_19.jpg',\n",
" 'r004061_20.jpg',\n",
" 'r004061_21.jpg',\n",
" 'r004061_22.jpg',\n",
" 'r004061_23.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is a man wearing a striped blanket over his backpack runs behind two other men.,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 3\\n object consistency: 3\\n dynamic degree: 3\\n motion smoothness: 3\\n text-to-video alignment: 3\\n factual consistency: 3\\n overall score: 3\\n'}]},\n",
" {'id': 'worsen_gen_b404675',\n",
" 'images': ['b404675_00.jpg',\n",
" 'b404675_01.jpg',\n",
" 'b404675_02.jpg',\n",
" 'b404675_03.jpg',\n",
" 'b404675_04.jpg',\n",
" 'b404675_05.jpg',\n",
" 'b404675_06.jpg',\n",
" 'b404675_07.jpg',\n",
" 'b404675_08.jpg',\n",
" 'b404675_09.jpg',\n",
" 'b404675_10.jpg',\n",
" 'b404675_11.jpg',\n",
" 'b404675_12.jpg',\n",
" 'b404675_13.jpg',\n",
" 'b404675_14.jpg',\n",
" 'b404675_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is After a few years, Ghulam Muhammad became the owner of his business ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 1\\n dynamic degree: 3\\n motion smoothness: 3\\n text-to-video alignment: 2\\n factual consistency: 3\\n overall score: 1\\n'}]},\n",
" {'id': 'worsen_gen_b402727',\n",
" 'images': ['b402727_00.jpg',\n",
" 'b402727_01.jpg',\n",
" 'b402727_02.jpg',\n",
" 'b402727_03.jpg',\n",
" 'b402727_04.jpg',\n",
" 'b402727_05.jpg',\n",
" 'b402727_06.jpg',\n",
" 'b402727_07.jpg',\n",
" 'b402727_08.jpg',\n",
" 'b402727_09.jpg',\n",
" 'b402727_10.jpg',\n",
" 'b402727_11.jpg',\n",
" 'b402727_12.jpg',\n",
" 'b402727_13.jpg',\n",
" 'b402727_14.jpg',\n",
" 'b402727_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is view down to the path in the field, moving forward, night, dark. ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 1\\n dynamic degree: 3\\n motion smoothness: 3\\n text-to-video alignment: 3\\n factual consistency: 3\\n overall score: 1\\n'}]},\n",
" {'id': 'worsen_gen_b304986',\n",
" 'images': ['b304986_00.jpg',\n",
" 'b304986_01.jpg',\n",
" 'b304986_02.jpg',\n",
" 'b304986_03.jpg',\n",
" 'b304986_04.jpg',\n",
" 'b304986_05.jpg',\n",
" 'b304986_06.jpg',\n",
" 'b304986_07.jpg',\n",
" 'b304986_08.jpg',\n",
" 'b304986_09.jpg',\n",
" 'b304986_10.jpg',\n",
" 'b304986_11.jpg',\n",
" 'b304986_12.jpg',\n",
" 'b304986_13.jpg',\n",
" 'b304986_14.jpg',\n",
" 'b304986_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is Old Philippino man, close up, subtle smile, teats of joy, in old wood room ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 3\\n object consistency: 1\\n dynamic degree: 3\\n motion smoothness: 1\\n text-to-video alignment: 2\\n factual consistency: 3\\n overall score: 1\\n'}]},\n",
" {'id': 'static_d500937',\n",
" 'images': ['d500937_00.jpg',\n",
" 'd500937_01.jpg',\n",
" 'd500937_02.jpg',\n",
" 'd500937_03.jpg',\n",
" 'd500937_04.jpg',\n",
" 'd500937_05.jpg',\n",
" 'd500937_06.jpg',\n",
" 'd500937_07.jpg',\n",
" 'd500937_08.jpg',\n",
" 'd500937_09.jpg',\n",
" 'd500937_10.jpg',\n",
" 'd500937_11.jpg',\n",
" 'd500937_12.jpg',\n",
" 'd500937_13.jpg',\n",
" 'd500937_14.jpg',\n",
" 'd500937_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is write y in the garden with flowers ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 3\\n dynamic degree: 1\\n motion smoothness: 1\\n text-to-video alignment: 1\\n factual consistency: 1\\n overall score: 1\\n'}]},\n",
" {'id': 'static_d500506',\n",
" 'images': ['d500506_00.jpg',\n",
" 'd500506_01.jpg',\n",
" 'd500506_02.jpg',\n",
" 'd500506_03.jpg',\n",
" 'd500506_04.jpg',\n",
" 'd500506_05.jpg',\n",
" 'd500506_06.jpg',\n",
" 'd500506_07.jpg',\n",
" 'd500506_08.jpg',\n",
" 'd500506_09.jpg',\n",
" 'd500506_10.jpg',\n",
" 'd500506_11.jpg',\n",
" 'd500506_12.jpg',\n",
" 'd500506_13.jpg',\n",
" 'd500506_14.jpg',\n",
" 'd500506_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is a boy paiting a beautiful landscape ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 3\\n dynamic degree: 1\\n motion smoothness: 1\\n text-to-video alignment: 1\\n factual consistency: 1\\n overall score: 1\\n'}]},\n",
" {'id': 'static_d401950',\n",
" 'images': ['d401950_00.jpg',\n",
" 'd401950_01.jpg',\n",
" 'd401950_02.jpg',\n",
" 'd401950_03.jpg',\n",
" 'd401950_04.jpg',\n",
" 'd401950_05.jpg',\n",
" 'd401950_06.jpg',\n",
" 'd401950_07.jpg',\n",
" 'd401950_08.jpg',\n",
" 'd401950_09.jpg',\n",
" 'd401950_10.jpg',\n",
" 'd401950_11.jpg',\n",
" 'd401950_12.jpg',\n",
" 'd401950_13.jpg',\n",
" 'd401950_14.jpg',\n",
" 'd401950_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is sneaker with exclusive design worth 1 billion ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 3\\n dynamic degree: 1\\n motion smoothness: 1\\n text-to-video alignment: 1\\n factual consistency: 1\\n overall score: 1\\n'}]},\n",
" {'id': 'insf_a500251',\n",
" 'images': ['a500251_00.jpg',\n",
" 'a500251_01.jpg',\n",
" 'a500251_02.jpg',\n",
" 'a500251_03.jpg',\n",
" 'a500251_04.jpg',\n",
" 'a500251_05.jpg',\n",
" 'a500251_06.jpg',\n",
" 'a500251_07.jpg',\n",
" 'a500251_08.jpg',\n",
" 'a500251_09.jpg',\n",
" 'a500251_10.jpg',\n",
" 'a500251_11.jpg',\n",
" 'a500251_12.jpg',\n",
" 'a500251_13.jpg',\n",
" 'a500251_14.jpg',\n",
" 'a500251_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is :sci fi war in the moon ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 1\\n dynamic degree: 3\\n motion smoothness: 1\\n text-to-video alignment: 1\\n factual consistency: 1\\n overall score: 1\\n'}]},\n",
" {'id': 'insf_a400480',\n",
" 'images': ['a400480_00.jpg',\n",
" 'a400480_01.jpg',\n",
" 'a400480_02.jpg',\n",
" 'a400480_03.jpg',\n",
" 'a400480_04.jpg',\n",
" 'a400480_05.jpg',\n",
" 'a400480_06.jpg',\n",
" 'a400480_07.jpg',\n",
" 'a400480_08.jpg',\n",
" 'a400480_09.jpg',\n",
" 'a400480_10.jpg',\n",
" 'a400480_11.jpg',\n",
" 'a400480_12.jpg',\n",
" 'a400480_13.jpg',\n",
" 'a400480_14.jpg',\n",
" 'a400480_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is for a dog accessories brand a welcome image: brand name: hot doggies ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 1\\n dynamic degree: 3\\n motion smoothness: 1\\n text-to-video alignment: 1\\n factual consistency: 1\\n overall score: 1\\n'}]},\n",
" {'id': 'insf_a500010',\n",
" 'images': ['a500010_00.jpg',\n",
" 'a500010_01.jpg',\n",
" 'a500010_02.jpg',\n",
" 'a500010_03.jpg',\n",
" 'a500010_04.jpg',\n",
" 'a500010_05.jpg',\n",
" 'a500010_06.jpg',\n",
" 'a500010_07.jpg',\n",
" 'a500010_08.jpg',\n",
" 'a500010_09.jpg',\n",
" 'a500010_10.jpg',\n",
" 'a500010_11.jpg',\n",
" 'a500010_12.jpg',\n",
" 'a500010_13.jpg',\n",
" 'a500010_14.jpg',\n",
" 'a500010_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is a druid in the forest cinematic ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 1\\n object consistency: 1\\n dynamic degree: 3\\n motion smoothness: 1\\n text-to-video alignment: 1\\n factual consistency: 1\\n overall score: 1\\n'}]},\n",
" {'id': 'lab_3005033',\n",
" 'images': ['3005033_00.jpg',\n",
" '3005033_01.jpg',\n",
" '3005033_02.jpg',\n",
" '3005033_03.jpg',\n",
" '3005033_04.jpg',\n",
" '3005033_05.jpg',\n",
" '3005033_06.jpg',\n",
" '3005033_07.jpg',\n",
" '3005033_08.jpg',\n",
" '3005033_09.jpg',\n",
" '3005033_10.jpg',\n",
" '3005033_11.jpg',\n",
" '3005033_12.jpg',\n",
" '3005033_13.jpg',\n",
" '3005033_14.jpg',\n",
" '3005033_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is a robot vacuum traveling through southeast asian countries ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 3\\n object consistency: 2\\n dynamic degree: 3\\n motion smoothness: 2\\n text-to-video alignment: 2\\n factual consistency: 3\\n overall score: 2\\n'}]},\n",
" {'id': 'lab_7004180',\n",
" 'images': ['7004180_00.jpg',\n",
" '7004180_01.jpg',\n",
" '7004180_02.jpg',\n",
" '7004180_03.jpg',\n",
" '7004180_04.jpg',\n",
" '7004180_05.jpg',\n",
" '7004180_06.jpg',\n",
" '7004180_07.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is jiaxuan is the most beautiful ,elegant,charming girl in the world. billions of boys fell in love with her ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 3\\n object consistency: 3\\n dynamic degree: 3\\n motion smoothness: 3\\n text-to-video alignment: 3\\n factual consistency: 3\\n overall score: 3\\n'}]},\n",
" {'id': 'lab_1006309',\n",
" 'images': ['1006309_00.jpg',\n",
" '1006309_01.jpg',\n",
" '1006309_02.jpg',\n",
" '1006309_03.jpg',\n",
" '1006309_04.jpg',\n",
" '1006309_05.jpg',\n",
" '1006309_06.jpg',\n",
" '1006309_07.jpg',\n",
" '1006309_08.jpg',\n",
" '1006309_09.jpg',\n",
" '1006309_10.jpg',\n",
" '1006309_11.jpg',\n",
" '1006309_12.jpg',\n",
" '1006309_13.jpg',\n",
" '1006309_14.jpg',\n",
" '1006309_15.jpg'],\n",
" 'conversations': [{'from': 'human',\n",
" 'value': \"\\nSuppose you are an expert in judging and evaluating the quality of AI-generated videos, \\nplease watch the following frames of a given video and see the text prompt for generating the video, \\nthen give scores from 7 different dimensions:\\n(1) visual quality, \\n(2) object consistency,\\n(3) dynamic degree,\\n(4) motion smoothness,\\n(5) text-to-video alignment,\\n(6) factual consistency, \\n(7) overall score\\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\\nHere is an output example: \\nvisual quality: 3\\nobject consistency: 2 \\ndynamic degree: 2\\nmotion smoothness: 1\\ntext-to-video alignment: 1\\nfactual consistency: 2\\noverall score: 1\\n\\nFor this item, the text prompt is scary halloween skeletons are having a conversation with each other ,\\nall the frames of video are as follows: \\n\\n<image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> <image> \\n\"},\n",
" {'from': 'gpt',\n",
" 'value': 'visual quality: 3\\n object consistency: 2\\n dynamic degree: 3\\n motion smoothness: 2\\n text-to-video alignment: 3\\n factual consistency: 2\\n overall score: 3\\n'}]}]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"examples"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"e"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "mantis",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|