taesiri's picture
Tweaks!
cb998cb
raw
history blame
6.07 kB
from torch.utils.data import DataLoader
import torch
from model.base.geometry import Geometry
from common.evaluation import Evaluator
from common.logger import AverageMeter
from common.logger import Logger
from data import download
from model import chmnet
from itertools import product
import matplotlib
import matplotlib.patches as patches
from matplotlib.patches import ConnectionPatch
from matplotlib import pyplot as plt
from PIL import Image
import numpy as np
import os
import torchvision
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
import random
import gradio as gr
# Downloading the Model
torchvision.datasets.utils.download_file_from_google_drive('1zsJRlAsoOn5F0GTCprSFYwDDfV85xDy6', '.', 'pas_psi.pt')
# Model Initialization
args = dict({
'alpha' : [0.05, 0.1],
'benchmark':'pfpascal',
'bsz':90,
'datapath':'../Datasets_CHM',
'img_size':240,
'ktype':'psi',
'load':'pas_psi.pt',
'thres':'img'
})
model = chmnet.CHMNet(args['ktype'])
model.load_state_dict(torch.load(args['load'], map_location=torch.device('cpu')))
Evaluator.initialize(args['alpha'])
Geometry.initialize(img_size=args['img_size'])
model.eval();
# Transforms
chm_transform = transforms.Compose(
[transforms.Resize(args['img_size']),
transforms.CenterCrop((args['img_size'], args['img_size'])),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
chm_transform_plot = transforms.Compose(
[transforms.Resize(args['img_size']),
transforms.CenterCrop((args['img_size'], args['img_size']))])
# A Helper Function
to_np = lambda x: x.data.to('cpu').numpy()
# Colors for Plotting
cmap = matplotlib.cm.get_cmap('Spectral')
rgba = cmap(0.5)
colors = []
for k in range(49):
colors.append(cmap(k/49.0))
# CHM MODEL
def run_chm(source_image, target_image, selected_points, number_src_points , chm_transform, display_transform):
# Convert to Tensor
src_img_tnsr = chm_transform(source_image).unsqueeze(0)
tgt_img_tnsr = chm_transform(target_image).unsqueeze(0)
# Selected_points = selected_points.T
keypoints = torch.tensor(selected_points).unsqueeze(0)
n_pts = torch.tensor(np.asarray([number_src_points]))
# RUN CHM ------------------------------------------------------------------------
with torch.no_grad():
corr_matrix = model(src_img_tnsr, tgt_img_tnsr)
prd_kps = Geometry.transfer_kps(corr_matrix, keypoints, n_pts, normalized=False)
# VISUALIZATION
src_points = keypoints[0].squeeze(0).squeeze(0).numpy()
tgt_points = prd_kps[0].squeeze(0).squeeze(0).cpu().numpy()
src_points_converted = []
w, h = display_transform(source_image).size
for x,y in zip(src_points[0], src_points[1]):
src_points_converted.append([int(x*w/args['img_size']),int((y)*h/args['img_size'])])
src_points_converted = np.asarray(src_points_converted[:number_src_points])
tgt_points_converted = []
w, h = display_transform(target_image).size
for x, y in zip(tgt_points[0], tgt_points[1]):
tgt_points_converted.append([int(((x+1)/2.0)*w),int(((y+1)/2.0)*h)])
tgt_points_converted = np.asarray(tgt_points_converted[:number_src_points])
tgt_grid = []
for x, y in zip(tgt_points[0], tgt_points[1]):
tgt_grid.append([int(((x+1)/2.0)*7),int(((y+1)/2.0)*7)])
# PLOT
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 8))
ax[0].imshow(display_transform(source_image))
ax[0].scatter(src_points_converted[:, 0], src_points_converted[:, 1], c=colors[:number_src_points])
ax[0].set_title('Source')
ax[0].set_xticks([])
ax[0].set_yticks([])
ax[1].imshow(display_transform(target_image))
ax[1].scatter(tgt_points_converted[:, 0], tgt_points_converted[:, 1], c=colors[:number_src_points])
ax[1].set_title('Target')
ax[1].set_xticks([])
ax[1].set_yticks([])
for TL in range(49):
ax[0].text(x=src_points_converted[TL][0], y=src_points_converted[TL][1], s=str(TL), fontdict=dict(color='red', size=11))
for TL in range(49):
ax[1].text(x=tgt_points_converted[TL][0], y=tgt_points_converted[TL][1], s=f'{str(TL)}', fontdict=dict(color='orange', size=11))
plt.tight_layout()
fig.suptitle('CHM Correspondences\nUsing $\it{pas\_psi.pt}$ Weights ', fontsize=16)
return fig
# Wrapper
def generate_correspondences(sousrce_image, target_image, min_x=1, max_x=100, min_y=1, max_y=100):
A = np.linspace(min_x, max_x, 7)
B = np.linspace(min_y, max_y, 7)
point_list = list(product(A, B))
new_points = np.asarray(point_list, dtype=np.float64).T
return run_chm(sousrce_image, target_image, selected_points=new_points, number_src_points=49, chm_transform=chm_transform, display_transform=chm_transform_plot)
# GRADIO APP
title = "Correspondence Matching with Convolutional Hough Matching Networks "
description = "Performs keypoint transform from a 7x7 gird on the source image to the target image. Use the sliders to adjust the grid."
article = "<p style='text-align: center'><a href='https://github.com/juhongm999/chm' target='_blank'>Original Github Repo</a></p>"
iface = gr.Interface(fn=generate_correspondences,
inputs=[gr.inputs.Image(shape=(240, 240), type='pil'),
gr.inputs.Image(shape=(240, 240), type='pil'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='Min X'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='Max X'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='Min Y'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='Max Y')], outputs="plot", enable_queue=True, title=title,
description=description,
article=article,
examples=[['sample1.jpeg', 'sample2.jpeg', 15, 215, 15, 215]])
iface.launch()