Spaces:
Sleeping
Sleeping
File size: 13,143 Bytes
2d8b8bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import os
import fitz
from pptx import Presentation
import subprocess
from datetime import datetime
from llama_index.core import Document
from utils import (
describe_image, is_graph, process_graph, extract_text_around_item,
process_text_blocks, save_uploaded_file
)
def get_pdf_documents(pdf_file):
"""Process a PDF file and extract text, tables, and images."""
all_pdf_documents = []
ongoing_tables = {}
try:
f = fitz.open(stream=pdf_file.read(), filetype="pdf")
except Exception as e:
print(f"Error opening or processing the PDF file: {e}")
return []
for i in range(len(f)):
page = f[i]
text_blocks = [block for block in page.get_text("blocks", sort=True)
if block[-1] == 0 and not (block[1] < page.rect.height * 0.1 or block[3] > page.rect.height * 0.9)]
grouped_text_blocks = process_text_blocks(text_blocks)
table_docs, table_bboxes, ongoing_tables = parse_all_tables(pdf_file.name, page, i, text_blocks, ongoing_tables)
all_pdf_documents.extend(table_docs)
image_docs = parse_all_images(pdf_file.name, page, i, text_blocks)
all_pdf_documents.extend(image_docs)
for text_block_ctr, (heading_block, content) in enumerate(grouped_text_blocks, 1):
heading_bbox = fitz.Rect(heading_block[:4])
if not any(heading_bbox.intersects(table_bbox) for table_bbox in table_bboxes):
bbox = {"x1": heading_block[0], "y1": heading_block[1], "x2": heading_block[2], "x3": heading_block[3]}
text_doc = Document(
text=f"{heading_block[4]}\n{content}",
metadata={
**bbox,
"type": "text",
"page_num": i,
"source": f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
},
id_=f"{pdf_file.name[:-4]}-page{i}-block{text_block_ctr}"
)
all_pdf_documents.append(text_doc)
f.close()
return all_pdf_documents
def parse_all_tables(filename, page, pagenum, text_blocks, ongoing_tables):
"""Extract tables from a PDF page."""
table_docs = []
table_bboxes = []
try:
tables = page.find_tables(horizontal_strategy="lines_strict", vertical_strategy="lines_strict")
for tab in tables:
if not tab.header.external:
pandas_df = tab.to_pandas()
tablerefdir = os.path.join(os.getcwd(), "vectorstore/table_references")
os.makedirs(tablerefdir, exist_ok=True)
df_xlsx_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.xlsx")
pandas_df.to_excel(df_xlsx_path)
bbox = fitz.Rect(tab.bbox)
table_bboxes.append(bbox)
before_text, after_text = extract_text_around_item(text_blocks, bbox, page.rect.height)
table_img = page.get_pixmap(clip=bbox)
table_img_path = os.path.join(tablerefdir, f"table{len(table_docs)+1}-page{pagenum}.jpg")
table_img.save(table_img_path)
description = process_graph(table_img.tobytes())
caption = before_text.replace("\n", " ") + description + after_text.replace("\n", " ")
if before_text == "" and after_text == "":
caption = " ".join(tab.header.names)
table_metadata = {
"source": f"{filename[:-4]}-page{pagenum}-table{len(table_docs)+1}",
"dataframe": df_xlsx_path,
"image": table_img_path,
"caption": caption,
"type": "table",
"page_num": pagenum
}
all_cols = ", ".join(list(pandas_df.columns.values))
doc = Document(text=f"This is a table with the caption: {caption}\nThe columns are {all_cols}", metadata=table_metadata)
table_docs.append(doc)
except Exception as e:
print(f"Error during table extraction: {e}")
return table_docs, table_bboxes, ongoing_tables
def parse_all_images(filename, page, pagenum, text_blocks):
"""Extract images from a PDF page."""
image_docs = []
image_info_list = page.get_image_info(xrefs=True)
page_rect = page.rect
for image_info in image_info_list:
xref = image_info['xref']
if xref == 0:
continue
img_bbox = fitz.Rect(image_info['bbox'])
if img_bbox.width < page_rect.width / 20 or img_bbox.height < page_rect.height / 20:
continue
extracted_image = page.parent.extract_image(xref)
image_data = extracted_image["image"]
imgrefpath = os.path.join(os.getcwd(), "vectorstore/image_references")
os.makedirs(imgrefpath, exist_ok=True)
image_path = os.path.join(imgrefpath, f"image{xref}-page{pagenum}.png")
with open(image_path, "wb") as img_file:
img_file.write(image_data)
before_text, after_text = extract_text_around_item(text_blocks, img_bbox, page.rect.height)
if before_text == "" and after_text == "":
continue
image_description = " "
if is_graph(image_data):
image_description = process_graph(image_data)
caption = before_text.replace("\n", " ") + image_description + after_text.replace("\n", " ")
image_metadata = {
"source": f"{filename[:-4]}-page{pagenum}-image{xref}",
"image": image_path,
"caption": caption,
"type": "image",
"page_num": pagenum
}
image_docs.append(Document(text="This is an image with the caption: " + caption, metadata=image_metadata))
return image_docs
def process_ppt_file(ppt_path):
"""Process a PowerPoint file."""
pdf_path = convert_ppt_to_pdf(ppt_path)
images_data = convert_pdf_to_images(pdf_path)
slide_texts = extract_text_and_notes_from_ppt(ppt_path)
processed_data = []
for (image_path, page_num), (slide_text, notes) in zip(images_data, slide_texts):
if notes:
notes = "\n\nThe speaker notes for this slide are: " + notes
with open(image_path, 'rb') as image_file:
image_content = image_file.read()
image_description = " "
if is_graph(image_content):
image_description = process_graph(image_content)
image_metadata = {
"source": f"{os.path.basename(ppt_path)}",
"image": image_path,
"caption": slide_text + image_description + notes,
"type": "image",
"page_num": page_num
}
processed_data.append(Document(text="This is a slide with the text: " + slide_text + image_description, metadata=image_metadata))
return processed_data
def convert_ppt_to_pdf(ppt_path):
"""Convert a PowerPoint file to PDF using LibreOffice."""
base_name = os.path.basename(ppt_path)
ppt_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
new_dir_path = os.path.abspath("vectorstore/ppt_references")
os.makedirs(new_dir_path, exist_ok=True)
pdf_path = os.path.join(new_dir_path, f"{ppt_name_without_ext}.pdf")
command = ['libreoffice', '--headless', '--convert-to', 'pdf', '--outdir', new_dir_path, ppt_path]
subprocess.run(command, check=True)
return pdf_path
def convert_pdf_to_images(pdf_path):
"""Convert a PDF file to a series of images using PyMuPDF."""
doc = fitz.open(pdf_path)
base_name = os.path.basename(pdf_path)
pdf_name_without_ext = os.path.splitext(base_name)[0].replace(' ', '_')
new_dir_path = os.path.join(os.getcwd(), "vectorstore/ppt_references")
os.makedirs(new_dir_path, exist_ok=True)
image_paths = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
pix = page.get_pixmap()
output_image_path = os.path.join(new_dir_path, f"{pdf_name_without_ext}_{page_num:04d}.png")
pix.save(output_image_path)
image_paths.append((output_image_path, page_num))
doc.close()
return image_paths
def extract_text_and_notes_from_ppt(ppt_path):
"""Extract text and notes from a PowerPoint file."""
prs = Presentation(ppt_path)
text_and_notes = []
for slide in prs.slides:
slide_text = ' '.join([shape.text for shape in slide.shapes if hasattr(shape, "text")])
try:
notes = slide.notes_slide.notes_text_frame.text if slide.notes_slide else ''
except:
notes = ''
text_and_notes.append((slide_text, notes))
return text_and_notes
def load_multimodal_data(files):
"""Load and process multiple file types with timestamp metadata."""
documents = []
for file in files:
# Get current timestamp
current_timestamp = datetime.now().isoformat()
file_extension = os.path.splitext(file.lower())[1]
if file_extension in ('.png', '.jpg', '.jpeg'):
image_content = open(file, "rb").read()
image_text = describe_image(image_content)
doc = Document(
text=image_text,
metadata={
"source": file.lower(),
"type": "image",
"timestamp": current_timestamp
}
)
documents.append(doc)
elif file_extension == '.pdf':
try:
pdf_documents = get_pdf_documents(file)
# Add timestamp to each PDF document
for pdf_doc in pdf_documents:
pdf_doc.metadata['timestamp'] = current_timestamp
documents.extend(pdf_documents)
except Exception as e:
print(f"Error processing PDF {file.lower()}: {e}")
elif file_extension in ('.ppt', '.pptx'):
try:
ppt_documents = process_ppt_file(save_uploaded_file(file))
# Add timestamp to each PPT document
for ppt_doc in ppt_documents:
ppt_doc.metadata['timestamp'] = current_timestamp
documents.extend(ppt_documents)
except Exception as e:
print(f"Error processing PPT {file.lower()}: {e}")
else:
text = file.read().decode("utf-8")
doc = Document(
text=text,
metadata={
"source": file.lower(),
"type": "text",
"timestamp": current_timestamp
}
)
documents.append(doc)
return documents
def load_data_from_directory(directory):
"""Load and process multiple file types from a directory with timestamp metadata."""
documents = []
for filename in os.listdir(directory):
filepath = os.path.join(directory, filename)
# Get current timestamp
current_timestamp = datetime.now().isoformat()
file_extension = os.path.splitext(filename.lower())[1]
print(filename)
if file_extension in ('.png', '.jpg', '.jpeg'):
with open(filepath, "rb") as image_file:
image_content = image_file.read()
image_text = describe_image(image_content)
doc = Document(
text=image_text,
metadata={
"source": filename,
"type": "image",
"timestamp": current_timestamp
}
)
print(doc)
documents.append(doc)
elif file_extension == '.pdf':
with open(filepath, "rb") as pdf_file:
try:
pdf_documents = get_pdf_documents(pdf_file)
# Add timestamp to each PDF document
for pdf_doc in pdf_documents:
pdf_doc.metadata['timestamp'] = current_timestamp
documents.extend(pdf_documents)
except Exception as e:
print(f"Error processing PDF {filename}: {e}")
elif file_extension in ('.ppt', '.pptx'):
try:
ppt_documents = process_ppt_file(filepath)
# Add timestamp to each PPT document
for ppt_doc in ppt_documents:
ppt_doc.metadata['timestamp'] = current_timestamp
documents.extend(ppt_documents)
print(ppt_documents)
except Exception as e:
print(f"Error processing PPT {filename}: {e}")
else:
with open(filepath, "r", encoding="utf-8") as text_file:
text = text_file.read()
doc = Document(
text=text,
metadata={
"source": filename,
"type": "text",
"timestamp": current_timestamp
}
)
documents.append(doc)
return documents |