Spaces:
Running
Running
File size: 12,319 Bytes
2d8b8bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from dotenv import load_dotenv
load_dotenv()
import os
import chainlit as cl
from llama_index.core import Settings
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.vector_stores.milvus import MilvusVectorStore
from llama_index.embeddings.nvidia import NVIDIAEmbedding
from llama_index.llms.nvidia import NVIDIA
from document_processor import load_multimodal_data, load_data_from_directory
from utils import set_environment_variables
import tempfile
from typing import List
from PIL import Image
import io
# Initialize settings
def initialize_setting():
Settings.embed_model = NVIDIAEmbedding(model="nvidia/nv-embedqa-e5-v5", truncate="END")
Settings.llm = NVIDIA(model="meta/llama-3.1-70b-instruct")
Settings.text_splitter = SentenceSplitter(chunk_size=600)
# Create index from documents
def create_index(documents):
vector_store = MilvusVectorStore(
token="db_341eca982e73331:Dr8+SXGsfb3Kp4/8",
host = "https://in03-341eca982e73331.serverless.gcp-us-west1.cloud.zilliz.com",
port = 19530,
dim = 1024
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
return VectorStoreIndex.from_documents(documents, storage_context=storage_context)
async def process_uploaded_files(files: List[cl.File]) -> List[str]:
"""Process uploaded files and return paths to processed files."""
temp_dir = tempfile.mkdtemp()
processed_paths = []
print("\n=== Starting File Processing ===")
print(f"Number of files received: {len(files)}")
print(f"Temporary directory: {temp_dir}")
for file in files:
try:
print(f"\n--- Processing file ---")
print(f"File object type: {type(file)}")
print(f"File attributes: {dir(file)}")
# Handle string paths (direct file paths)
if isinstance(file, str):
print("Processing as string path")
if os.path.exists(file):
file_name = os.path.basename(file)
file_extension = os.path.splitext(file_name)[1].lower()
temp_path = os.path.join(temp_dir, file_name)
print(f"File exists at path: {file}")
print(f"File name: {file_name}")
print(f"File extension: {file_extension}")
print(f"Temp path: {temp_path}")
# Copy the file
import shutil
shutil.copy2(file, temp_path)
if file_extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
await cl.Message(
content=f"πΈ Received image: {file_name}",
elements=[cl.Image(path=file, name=file_name, display="inline")]
).send()
else:
await cl.Message(
content=f"π Received file: {file_name}"
).send()
processed_paths.append(temp_path)
print("File processed successfully as string path")
else:
print(f"File path does not exist: {file}")
continue
# Handle Chainlit File objects
print("Processing as Chainlit File object")
file_extension = os.path.splitext(file.name)[1].lower()
temp_path = os.path.join(temp_dir, file.name)
print(f"File name: {file.name}")
print(f"File extension: {file_extension}")
print(f"Temp path: {temp_path}")
# Handle files with direct path (Chainlit Image objects)
if hasattr(file, 'path') and os.path.exists(file.path):
print(f"File has path attribute: {file.path}")
# For Chainlit Image objects, copy the file
import shutil
shutil.copy2(file.path, temp_path)
print("File copied successfully")
if file_extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
print("Processing as image file")
await cl.Message(
content=f"πΈ Received image: {file.name}",
elements=[cl.Image(path=file.path, name=file.name, display="inline")]
).send()
else:
print("Processing as non-image file")
await cl.Message(
content=f"π Received file: {file.name}"
).send()
else:
print("Attempting to process file content")
# For other file types, try to get content
file_content = file.content if hasattr(file, 'content') else None
if not file_content:
print("No file content available")
await cl.Message(
content=f"β οΈ Warning: Could not access content for {file.name}"
).send()
continue
print("Writing file content to temp path")
with open(temp_path, 'wb') as f:
f.write(file_content)
await cl.Message(
content=f"π Received file: {file.name}"
).send()
processed_paths.append(temp_path)
print("File processed successfully")
except Exception as e:
print(f"Error processing file: {str(e)}")
print(f"Error type: {type(e)}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
await cl.Message(
content=f"β Error processing file: {str(e)}"
).send()
continue
print("\n=== File Processing Summary ===")
print(f"Total files processed: {len(processed_paths)}")
print(f"Processed paths: {processed_paths}")
return processed_paths
@cl.on_chat_start
async def start():
"""Initialize the chat session."""
set_environment_variables()
initialize_setting()
# Initialize session variables
cl.user_session.set('index', None)
cl.user_session.set('temp_dir', tempfile.mkdtemp())
# Send welcome message
await cl.Message(
content="π Welcome! You can:\n"
"1. Upload images or documents using the paperclip icon\n"
"2. Ask questions about the uploaded content\n"
"3. Get detailed analysis including text extraction and scene descriptions"
).send()
@cl.on_message
async def main(message: cl.Message):
"""Handle incoming messages and files."""
print("\n=== Starting Message Processing ===")
print(f"Message type: {type(message)}")
print(f"Message content: {message.content}")
print(f"Message elements: {message.elements}")
print(f"Message attributes: {dir(message)}")
# Process any uploaded files
if message.elements:
print("\n--- Processing File Upload ---")
print(f"Number of elements: {len(message.elements)}")
print(f"Elements types: {[type(elem) for elem in message.elements]}")
try:
# Process uploaded files
print("Starting file processing...")
processed_paths = await process_uploaded_files(message.elements)
print(f"Processed paths: {processed_paths}")
if processed_paths:
print("\n--- Creating Documents ---")
# Create documents from the processed files
documents = load_multimodal_data(processed_paths)
print(f"Number of documents created: {len(documents) if documents else 0}")
if documents:
print("\n--- Creating Index ---")
# Create or update the index
index = create_index(documents)
cl.user_session.set('index', index)
print("Index created and stored in session")
await cl.Message(
content="β
Files processed successfully! You can now ask questions about the content."
).send()
else:
print("No documents were created")
await cl.Message(
content="β οΈ No documents were created from the uploaded files."
).send()
return
else:
print("No files were processed successfully")
await cl.Message(
content="β οΈ No files were successfully processed."
).send()
return
except Exception as e:
print(f"\n!!! Error in file processing !!!")
print(f"Error type: {type(e)}")
print(f"Error message: {str(e)}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
await cl.Message(
content=f"β Error processing files: {str(e)}"
).send()
return
# Handle text queries
if message.content:
print("\n--- Processing Text Query ---")
print(f"Query content: {message.content}")
index = cl.user_session.get('index')
print(f"Index exists: {index is not None}")
if index is None:
print("No index found in session")
await cl.Message(
content="β οΈ Please upload some files first before asking questions."
).send()
return
try:
print("Creating query engine...")
# Create message placeholder for streaming
msg = cl.Message(content="")
await msg.send()
# Process the query
query_engine = index.as_query_engine(similarity_top_k=20)
print("Executing query...")
response = query_engine.query(message.content)
print("Query executed successfully")
# Format the response
response_text = str(response)
# Check for special queries
special_keywords = ["what do you see", "describe the image", "what's in the image",
"analyze the image", "text in image", "extract text"]
if any(keyword in message.content.lower() for keyword in special_keywords):
print("Processing special image analysis query")
response_text += "\n\n**Image Analysis:**\n"
response_text += "- Visible Text: [Extracted text from the image]\n"
response_text += "- Scene Description: [Description of the image content]\n"
response_text += "- Objects Detected: [List of detected objects]\n"
print("Updating response message...")
# Update the message with the final response
msg.content=response_text
await msg.update()
print("Response sent successfully")
except Exception as e:
print(f"\n!!! Error in query processing !!!")
print(f"Error type: {type(e)}")
print(f"Error message: {str(e)}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
await cl.Message(
content=f"β Error processing query: {str(e)}"
).send()
print("\n=== Message Processing Complete ===\n")
@cl.on_stop
def on_stop():
"""Clean up resources when the chat session ends."""
# Clean up temporary directory
temp_dir = cl.user_session.get('temp_dir')
if temp_dir and os.path.exists(temp_dir):
try:
import shutil
shutil.rmtree(temp_dir)
except Exception:
pass
if __name__ == "__main__":
cl.run() |