Spaces:
Running
on
L40S
Running
on
L40S
File size: 20,525 Bytes
8590074 e3e5f9e 286f442 e3e5f9e 0514ca2 9c2f3de e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 9c2f3de 0514ca2 9c2f3de cc152b6 dde5f60 1c17889 7cfde4b 4496654 e3e5f9e 0514ca2 e3e5f9e 9977009 2bc776c 0514ca2 e3e5f9e 0514ca2 2bc776c 0514ca2 69d0567 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 286f442 e3e5f9e 0514ca2 e3e5f9e 0514ca2 286f442 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 286f442 e3e5f9e 286f442 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 286f442 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 2bc776c e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 019b599 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e 0514ca2 e3e5f9e e4a3f19 e3e5f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import spaces
import os
import warnings
import argparse
import gradio as gr
from glob import glob
import shutil
import torch
import numpy as np
from PIL import Image
from einops import rearrange
import pandas as pd
from huggingface_hub import snapshot_download
from infer import seed_everything, save_gif
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
from third_party.check import check_bake_available
warnings.simplefilter('ignore', category=UserWarning)
warnings.simplefilter('ignore', category=FutureWarning)
warnings.simplefilter('ignore', category=DeprecationWarning)
parser = argparse.ArgumentParser()
parser.add_argument("--use_lite", default=False, action="store_true")
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
parser.add_argument("--save_memory", default=False, action="store_true")
parser.add_argument("--device", default="cuda:0", type=str)
args = parser.parse_args()
def download_models():
os.makedirs("weights", exist_ok=True)
os.makedirs("weights/hunyuanDiT", exist_ok=True)
os.makedirs("third_party/weights/DUSt3R_ViTLarge_BaseDecoder_512_dpt", exist_ok=True)
try:
snapshot_download(
repo_id="tencent/Hunyuan3D-1",
local_dir="./weights",
resume_download=True
)
print("Successfully downloaded Hunyuan3D-1 model")
except Exception as e:
print(f"Error downloading Hunyuan3D-1: {e}")
try:
snapshot_download(
repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled",
local_dir="./weights/hunyuanDiT",
resume_download=True
)
print("Successfully downloaded HunyuanDiT model")
except Exception as e:
print(f"Error downloading HunyuanDiT: {e}")
try:
snapshot_download(
repo_id="naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt",
local_dir="./third_party/weights/DUSt3R_ViTLarge_BaseDecoder_512_dpt",
resume_download=True
)
print("Successfully downloaded DUSt3R model")
except Exception as e:
print(f"Error downloading DUSt3R: {e}")
download_models()
try:
from third_party.mesh_baker import MeshBaker
assert check_bake_available()
BAKE_AVAILEBLE = True
except Exception as err:
print(err)
print("import baking related files fail, running without baking")
BAKE_AVAILEBLE = False
from glob import glob
print(glob("/usr/local/cuda/*"))
print(torch.cuda.is_available())
print(os.environ.get('CUDA_HOME', None))
os.environ['CUDA_HOME'] = '/usr/local/cuda'
# Optionally, update PATH and LD_LIBRARY_PATH if needed
os.environ['PATH'] = os.environ['CUDA_HOME'] + '/bin:' + os.environ['PATH']
os.environ['LD_LIBRARY_PATH'] = os.environ['CUDA_HOME'] + '/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
################################################################
# initial setting
################################################################
CONST_HEADER = '''
<h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation</b></a></h2>
⭐️Technical report: <a href='https://arxiv.org/pdf/2411.02293' target='_blank'>ArXiv</a>. ⭐️Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>.
'''
CONST_NOTE = '''
❗️❗️❗️Usage❗️❗️❗️<br>
Limited by format, the model can only export *.obj mesh with vertex colors. The "texture" mod can only work on *.glb.<br>
Please click "Do Rendering" to export a GIF.<br>
You can click "Do Baking" to bake multi-view imgaes onto the shape.<br>
If the results aren't satisfactory, please try a different radnom seed (default is 0).
'''
################################################################
# prepare text examples and image examples
################################################################
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./demos/example_*.png'))
def get_example_txt_list():
print('Loading example txt list ...')
txt_list = list()
for line in open('./demos/example_list.txt'):
txt_list.append(line.strip())
return txt_list
example_is = get_example_img_list()
example_ts = get_example_txt_list()
################################################################
# initial models
################################################################
worker_xbg = Removebg()
print(f"loading {args.text2image_path}")
worker_t2i = Text2Image(
pretrain = args.text2image_path,
device = args.device,
save_memory = args.save_memory
)
worker_i2v = Image2Views(
use_lite = args.use_lite,
device = args.device,
save_memory = args.save_memory
)
worker_v23 = Views2Mesh(
args.mv23d_cfg_path,
args.mv23d_ckt_path,
use_lite = args.use_lite,
device = args.device,
save_memory = args.save_memory
)
worker_gif = GifRenderer(args.device)
if BAKE_AVAILEBLE:
worker_baker = MeshBaker()
### functional modules
@spaces.GPU
def stage_0_t2i(text, image, seed, step):
os.makedirs('./outputs/app_output', exist_ok=True)
exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0
else: cur_id = min(set(range(30)) - exists)
if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"):
shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}")
save_folder = f'./outputs/app_output/{cur_id}'
os.makedirs(save_folder, exist_ok=True)
dst = save_folder + '/img.png'
if not text:
if image is None:
return dst, save_folder
raise gr.Error("Upload image or provide text ...")
image.save(dst)
return dst, save_folder
image = worker_t2i(text, seed, step)
image.save(dst)
dst = worker_xbg(image, save_folder)
return dst, save_folder
@spaces.GPU
def stage_1_xbg(image, save_folder, force_remove):
if isinstance(image, str):
image = Image.open(image)
dst = save_folder + '/img_nobg.png'
rgba = worker_xbg(image, force=force_remove)
rgba.save(dst)
return dst
@spaces.GPU
def stage_2_i2v(image, seed, step, save_folder):
if isinstance(image, str):
image = Image.open(image)
gif_dst = save_folder + '/views.gif'
res_img, pils = worker_i2v(image, seed, step)
save_gif(pils, gif_dst)
views_img, cond_img = res_img[0], res_img[1]
img_array = np.asarray(views_img, dtype=np.uint8)
show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_img = show_img[worker_i2v.order, ...]
show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_img = Image.fromarray(show_img)
return views_img, cond_img, show_img
@spaces.GPU
def stage_3_v23(
views_pil,
cond_pil,
seed,
save_folder,
target_face_count = 30000,
texture_color = 'texture'
):
do_texture_mapping = texture_color == 'texture'
worker_v23(
views_pil,
cond_pil,
seed = seed,
save_folder = save_folder,
target_face_count = target_face_count,
do_texture_mapping = do_texture_mapping
)
glb_dst = save_folder + '/mesh.glb' if do_texture_mapping else None
obj_dst = save_folder + '/mesh.obj'
obj_dst = save_folder + '/mesh_vertex_colors.obj' # gradio just only can show vertex shading
return obj_dst, glb_dst
@spaces.GPU
def stage_3p_baking(save_folder, color, bake):
if color == "texture" and bake:
obj_dst = worker_baker(save_folder)
glb_dst = obj_dst.replace(".obj", ".glb")
return glb_dst
else:
return None
@spaces.GPU
def stage_4_gif(save_folder, color, bake, render):
if not render: return None
if os.path.exists(save_folder + '/view_1/bake/mesh.obj'):
obj_dst = save_folder + '/view_1/bake/mesh.obj'
elif os.path.exists(save_folder + '/view_0/bake/mesh.obj'):
obj_dst = save_folder + '/view_0/bake/mesh.obj'
elif os.path.exists(save_folder + '/mesh.obj'):
obj_dst = save_folder + '/mesh.obj'
else:
print(save_folder)
raise FileNotFoundError("mesh obj file not found")
gif_dst = obj_dst.replace(".obj", ".gif")
worker_gif(obj_dst, gif_dst_path=gif_dst)
return gif_dst
def check_image_available(image):
if image.mode == "RGBA":
data = np.array(image)
alpha_channel = data[:, :, 3]
unique_alpha_values = np.unique(alpha_channel)
if len(unique_alpha_values) == 1:
msg = "The alpha channel is missing or invalid. The background removal option is selected for you."
return msg, gr.update(value=True, interactive=False)
else:
msg = "The image has four channels, and you can choose to remove the background or not."
return msg, gr.update(value=False, interactive=True)
elif image.mode == "RGB":
msg = "The alpha channel is missing or invalid. The background removal option is selected for you."
return msg, gr.update(value=True, interactive=False)
else:
raise Exception("Image Error")
def update_bake_render(color):
if color == "vertex":
return gr.update(value=False, interactive=False), gr.update(value=False, interactive=False)
else:
return gr.update(interactive=True), gr.update(interactive=True)
# ===============================================================
# gradio display
# ===============================================================
with gr.Blocks() as demo:
gr.Markdown(CONST_HEADER)
with gr.Row(variant="panel"):
###### Input region
with gr.Column(scale=2):
### Text iutput region
with gr.Tab("Text to 3D"):
with gr.Column():
text = gr.TextArea('一只黑白相间的熊猫在白色背景上居中坐着,呈现出卡通风格和可爱氛围。',
lines=3, max_lines=20, label='Input text')
with gr.Row():
textgen_color = gr.Radio(choices=["vertex", "texture"], label="Color", value="texture")
with gr.Row():
textgen_render = gr.Checkbox(label="Do Rendering", value=True, interactive=True)
if BAKE_AVAILEBLE:
textgen_bake = gr.Checkbox(label="Do Baking", value=True, interactive=True)
else:
textgen_bake = gr.Checkbox(label="Do Baking", value=False, interactive=False)
textgen_color.change(fn=update_bake_render, inputs=textgen_color, outputs=[textgen_bake, textgen_render])
with gr.Row():
textgen_seed = gr.Number(value=0, label="T2I seed", precision=0, interactive=True)
textgen_step = gr.Number(value=25, label="T2I steps", precision=0,
minimum=10, maximum=50, interactive=True)
textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0, interactive=True)
textgen_STEP = gr.Number(value=50, label="Gen steps", precision=0,
minimum=40, maximum=100, interactive=True)
textgen_max_faces = gr.Number(value=90000, label="Face number", precision=0,
minimum=5000, maximum=1000000, interactive=True)
with gr.Row():
textgen_submit = gr.Button("Generate", variant="primary")
with gr.Row():
gr.Examples(examples=example_ts, inputs=[text], label="Text examples", examples_per_page=10)
### Image iutput region
with gr.Tab("Image to 3D"):
with gr.Row():
input_image = gr.Image(label="Input image", width=256, height=256, type="pil",
image_mode="RGBA", sources="upload", interactive=True)
with gr.Row():
alert_message = gr.Markdown("") # for warning
with gr.Row():
imggen_color = gr.Radio(choices=["vertex", "texture"], label="Color", value="texture")
with gr.Row():
imggen_removebg = gr.Checkbox(label="Remove Background", value=True, interactive=True)
imggen_render = gr.Checkbox(label="Do Rendering", value=True, interactive=True)
if BAKE_AVAILEBLE:
imggen_bake = gr.Checkbox(label="Do Baking", value=True, interactive=True)
else:
imggen_bake = gr.Checkbox(label="Do Baking", value=False, interactive=False)
input_image.change(fn=check_image_available, inputs=input_image, outputs=[alert_message, imggen_removebg])
imggen_color.change(fn=update_bake_render, inputs=imggen_color, outputs=[imggen_bake, imggen_render])
with gr.Row():
imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0, interactive=True)
imggen_STEP = gr.Number(value=50, label="Gen steps", precision=0,
minimum=40, maximum=100, interactive=True)
imggen_max_faces = gr.Number(value=90000, label="Face number", precision=0,
minimum=5000, maximum=1000000, interactive=True)
with gr.Row():
imggen_submit = gr.Button("Generate", variant="primary")
with gr.Row():
gr.Examples(examples=example_is, inputs=[input_image],
label="Img examples", examples_per_page=10)
gr.Markdown(CONST_NOTE)
###### Output region
with gr.Column(scale=3):
with gr.Row():
with gr.Column(scale=2):
rem_bg_image = gr.Image(
label="Image without background",
type="pil",
image_mode="RGBA",
interactive=False
)
with gr.Column(scale=3):
result_image = gr.Image(
label="Multi-view images",
type="pil",
interactive=False
)
with gr.Row():
result_3dobj = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="OBJ vertex color",
show_label=True,
visible=True,
camera_position=[90, 90, None],
interactive=False
)
result_gif = gr.Image(label="GIF", interactive=False)
with gr.Row():
result_3dglb_texture = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="GLB texture color",
show_label=True,
visible=True,
camera_position=[90, 90, None],
interactive=False)
result_3dglb_baked = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="GLB baked color",
show_label=True,
visible=True,
camera_position=[90, 90, None],
interactive=False)
with gr.Row():
gr.Markdown(
"Due to Gradio limitations, OBJ files are displayed with vertex shading only, "
"while GLB files can be viewed with texture shading. <br>For the best experience, "
"we recommend downloading the GLB files and opening them with 3D software "
"like Blender or MeshLab."
)
#===============================================================
# gradio running code
#===============================================================
none = gr.State(None)
save_folder = gr.State()
cond_image = gr.State()
views_image = gr.State()
text_image = gr.State()
textgen_submit.click(
fn=stage_0_t2i,
inputs=[text, none, textgen_seed, textgen_step],
outputs=[rem_bg_image, save_folder],
).success(
fn=stage_2_i2v,
inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder],
outputs=[views_image, cond_image, result_image],
).success(
fn=stage_3_v23,
inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, textgen_color],
outputs=[result_3dobj, result_3dglb_texture],
).success(
fn=stage_3p_baking,
inputs=[save_folder, textgen_color, textgen_bake],
outputs=[result_3dglb_baked],
).success(
fn=stage_4_gif,
inputs=[save_folder, textgen_color, textgen_bake, textgen_render],
outputs=[result_gif],
).success(lambda: print('Text_to_3D Done ...'))
imggen_submit.click(
fn=stage_0_t2i,
inputs=[none, input_image, textgen_seed, textgen_step],
outputs=[text_image, save_folder],
).success(
fn=stage_1_xbg,
inputs=[text_image, save_folder, imggen_removebg],
outputs=[rem_bg_image],
).success(
fn=stage_2_i2v,
inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder],
outputs=[views_image, cond_image, result_image],
).success(
fn=stage_3_v23,
inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, imggen_color],
outputs=[result_3dobj, result_3dglb_texture],
).success(
fn=stage_3p_baking,
inputs=[save_folder, imggen_color, imggen_bake],
outputs=[result_3dglb_baked],
).success(
fn=stage_4_gif,
inputs=[save_folder, imggen_color, imggen_bake, imggen_render],
outputs=[result_gif],
).success(lambda: print('Image_to_3D Done ...'))
#===============================================================
# start gradio server
#===============================================================
demo.queue()
demo.launch()
|