File size: 20,595 Bytes
8590074
 
 
 
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fb712
e3e5f9e
 
 
 
 
 
 
 
 
 
0514ca2
e3e5f9e
b0bacf1
 
 
 
c13749f
b0bacf1
 
 
 
 
 
 
c13749f
b0bacf1
 
 
 
 
 
 
 
a0d4ef7
b0bacf1
 
 
a13abe3
b0bacf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde5f60
b0bacf1
 
 
c5fb712
 
 
 
dde5f60
 
 
 
 
 
 
c5fb712
dde5f60
c8486ac
c5fb712
 
 
 
 
 
 
 
 
 
 
 
 
e3e5f9e
0514ca2
 
e3e5f9e
 
 
9977009
2bc776c
0514ca2
e3e5f9e
0514ca2
 
2bc776c
66e6369
0514ca2
 
69d0567
0514ca2
e3e5f9e
 
0514ca2
 
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0514ca2
 
 
e3e5f9e
 
c5fb712
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fb712
0514ca2
 
c5fb712
0514ca2
 
 
c5fb712
 
e3e5f9e
 
c5fb712
 
 
 
 
 
 
e3e5f9e
 
c5fb712
 
e3e5f9e
c13749f
136f296
c04a30b
136f296
c13749f
136f296
 
 
 
 
c13749f
 
136f296
c13749f
e3e5f9e
 
 
c13749f
 
 
 
e3e5f9e
136f296
e3e5f9e
c13749f
e3e5f9e
 
c13749f
 
 
 
 
 
c5fb712
0514ca2
c13749f
136f296
c13749f
 
 
 
 
 
 
0514ca2
c5fb712
 
 
 
 
0514ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fb712
 
 
66e6369
 
 
c5fb712
 
66e6369
 
 
c5fb712
 
66e6369
375b68e
66e6369
c5fb712
 
66e6369
 
 
c5fb712
 
0514ca2
 
 
 
 
e3e5f9e
 
 
 
 
 
0514ca2
66e6369
c13749f
 
136f296
 
 
e3e5f9e
0514ca2
 
 
 
 
c13749f
 
 
 
 
 
 
 
 
 
136f296
c13749f
 
 
 
 
 
136f296
c13749f
 
 
136f296
c13749f
 
 
 
 
 
 
 
 
 
136f296
c13749f
 
 
136f296
c13749f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fb712
 
 
c13749f
 
 
 
c5fb712
 
c13749f
 
 
 
 
 
c5fb712
c13749f
 
 
 
 
 
 
 
 
 
 
 
 
c5fb712
 
 
c13749f
 
 
 
 
c5fb712
c13749f
 
 
 
 
c5fb712
0514ca2
136f296
0514ca2
e3e5f9e
 
 
 
c13749f
0514ca2
 
 
 
 
e3e5f9e
0514ca2
 
 
 
 
136f296
8e3bc8a
 
 
 
 
 
 
 
136f296
8e3bc8a
 
66e6369
8e3bc8a
 
 
 
 
 
 
66e6369
8e3bc8a
 
 
 
136f296
8e3bc8a
136f296
0514ca2
 
 
66e6369
0514ca2
 
 
 
 
 
 
136f296
 
 
e3e5f9e
136f296
 
c13749f
 
 
136f296
e3e5f9e
136f296
 
c13749f
 
 
 
6025ad9
136f296
db387e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Open Source Model Licensed under the Apache License Version 2.0 
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited 
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved. 
# The below software and/or models in this distribution may have been 
# modified by THL A29 Limited ("Tencent Modifications"). 
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT 
# except for the third-party components listed below. 
# Hunyuan 3D does not impose any additional limitations beyond what is outlined 
# in the repsective licenses of these third-party components. 
# Users must comply with all terms and conditions of original licenses of these third-party 
# components and must ensure that the usage of the third party components adheres to 
# all relevant laws and regulations. 

# For avoidance of doubts, Hunyuan 3D means the large language models and 
# their software and algorithms, including trained model weights, parameters (including 
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, 
# fine-tuning enabling code and other elements of the foregoing made publicly available 
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import os
import warnings
import argparse
import gradio as gr
from glob import glob
import shutil
import torch
import numpy as np
from PIL import Image
from einops import rearrange
import pandas as pd

import sys
import spaces
import subprocess
from huggingface_hub import snapshot_download

def install_cuda_toolkit():
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
        
def install_requirements():
    subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/NVlabs/nvdiffrast"])
    subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/facebookresearch/pytorch3d@stable"])
    
def download_models():
    os.makedirs("weights", exist_ok=True)
    os.makedirs("weights/hunyuanDiT", exist_ok=True)
    os.makedirs("third_party/weights/DUSt3R_ViTLarge_BaseDecoder_512_dpt", exist_ok=True)
    try:
        snapshot_download(
            repo_id="tencent/Hunyuan3D-1",
            local_dir="./weights",
            resume_download=True
        )
        print("Successfully downloaded Hunyuan3D-1 model")
    except Exception as e:
        print(f"Error downloading Hunyuan3D-1: {e}")
    try:
        snapshot_download(
            repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled",
            local_dir="./weights/hunyuanDiT",
            resume_download=True
        )
        print("Successfully downloaded HunyuanDiT model")
    except Exception as e:
        print(f"Error downloading HunyuanDiT: {e}")
    try:
        snapshot_download(
            repo_id="naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt",
            local_dir="./third_party/weights/DUSt3R_ViTLarge_BaseDecoder_512_dpt",
            resume_download=True
        )
        print("Successfully downloaded DUSt3R model")
    except Exception as e:
        print(f"Error downloading DUSt3R: {e}")
        
# install_cuda_toolkit()
install_requirements()
download_models() ### download weights !!!! 

from infer import seed_everything, save_gif
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer
from third_party.check import check_bake_available

try:
    from third_party.mesh_baker import MeshBaker
    assert check_bake_available()
    BAKE_AVAILEBLE = True
except Exception as err:
    print(err)
    print("import baking related fail, run without baking")
    BAKE_AVAILEBLE = False

warnings.simplefilter('ignore', category=UserWarning)
warnings.simplefilter('ignore', category=FutureWarning)
warnings.simplefilter('ignore', category=DeprecationWarning)

parser = argparse.ArgumentParser()
parser.add_argument("--use_lite", default=False, action="store_true")
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
parser.add_argument("--save_memory", default=False)
parser.add_argument("--device", default="cuda:0", type=str)
args = parser.parse_args()

################################################################
# initial setting
################################################################


CONST_HEADER = '''
<h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation</b></a></h2>
⭐️Technical report: <a href='https://arxiv.org/pdf/2411.02293' target='_blank'>ArXiv</a>. ⭐️Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>.
'''

CONST_NOTE = '''
❗️❗️❗️Usage❗️❗️❗️<br>

Limited by format, the model can only export *.obj mesh with vertex colors. The "face" mod can only work on *.glb.<br>
Please click "Do Rendering" to export a GIF.<br>
You can click "Do Baking" to bake multi-view imgaes onto the shape.<br>

If the results aren't satisfactory, please try a different radnom seed (default is 0).
'''

################################################################
# prepare text examples and image examples
################################################################

def get_example_img_list():
    print('Loading example img list ...')
    return sorted(glob('./demos/example_*.png'))

def get_example_txt_list():
    print('Loading example txt list ...')
    txt_list  = list()
    for line in open('./demos/example_list.txt'):
        txt_list.append(line.strip())
    return txt_list

example_is = get_example_img_list()
example_ts = get_example_txt_list()

################################################################
# initial models
################################################################

worker_xbg = Removebg()
print(f"loading {args.text2image_path}")
worker_t2i = Text2Image(
    pretrain = args.text2image_path, 
    device = args.device, 
    save_memory = args.save_memory
)
worker_i2v = Image2Views(
    use_lite = args.use_lite, 
    device = args.device,
    save_memory = args.save_memory
)
worker_v23 = Views2Mesh(
    args.mv23d_cfg_path, 
    args.mv23d_ckt_path, 
    use_lite = args.use_lite, 
    device = args.device,
    save_memory = args.save_memory
)
worker_gif = GifRenderer(args.device)

if BAKE_AVAILEBLE:
    worker_baker = MeshBaker()


### functional modules    

def gen_save_folder(max_size=30):
    os.makedirs('./outputs/app_output', exist_ok=True)
    exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
    if len(exists) == max_size: 
        shutil.rmtree(f"./outputs/app_output/0")
        cur_id = 0
    else:
        cur_id = min(set(range(max_size)) - exists)
    if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % max_size}"):
        shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % max_size}")
    save_folder = f'./outputs/app_output/{cur_id}'
    os.makedirs(save_folder, exist_ok=True)
    print(f"mkdir {save_folder} suceess !!!")
    return save_folder


# @spaces.GPU(duration=150)
def gen_pipe(text, image=None, do_removebg=True, sseed=0, sstep=25, SSEED=0, SSTEP=50, color='face', 
        bake=False, render=True, max_faces=12000, force=False, front='auto', others=[180], align_times=3):
    save_folder = gen_save_folder()
    image_gen = image is not None
    if not image_gen:
        image = worker_t2i(text, sseed, sstep)
        image.save(save_folder + '/img.png')
    img_nobg = worker_xbg(image, force=do_removebg if image_gen else True)
    img_nobg.save(save_folder + '/img_nobg.png')
    yield img_nobg, None, None, None, None, None
    res_img, pils = worker_i2v(img_nobg, seed=SSEED, steps=SSTEP)
    save_gif(pils,  save_folder + '/views.gif')
    views_img, cond_img = res_img[0], res_img[1]
    img_array = np.asarray(views_img, dtype=np.uint8)
    show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_img = rearrange(show_img[worker_i2v.order, ...], '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_img = Image.fromarray(show_img)
    yield img_nobg, show_img, None, None, None, None
    do_texture_mapping = color == 'face'
    worker_v23(
        views_img, cond_img, seed = SSEED,
        save_folder = save_folder,
        target_face_count = max_faces,
        do_texture_mapping = do_texture_mapping
    )
    glb_v23 = save_folder + '/mesh.glb' if do_texture_mapping else None
    obj_v23 = save_folder + '/mesh.obj'
    obj_v23 = save_folder + '/mesh_vertex_colors.obj'
    yield img_nobg, show_img, obj_v23, glb_v23, None, None
    glb_dst = None
    if do_texture_mapping and bake:
        obj_dst = worker_baker(save_folder, force, front, others, align_times)
        glb_dst = obj_dst.replace(".obj", ".glb")
    yield img_nobg, show_img, obj_v23, glb_v23, glb_dst, None
    if do_texture_mapping and render: 
        baked_obj_list = sorted(glob(save_folder + '/view_*/bake/mesh.obj'))
        obj_dst = baked_obj_list[-1] if len(baked_obj_list)>=1 else save_folder+'/mesh.obj'
        assert os.path.exists(obj_dst), f"{obj_dst} file not found"
        gif_dst = obj_dst.replace(".obj", ".gif")
        worker_gif(obj_dst, gif_dst_path=gif_dst)
        yield img_nobg, show_img, obj_v23, glb_v23, glb_dst, gif_dst
        
def check_image_available(image):
    if image is None:
        return "Please upload image", gr.update()
    elif not hasattr(image, 'mode'):
        return "Not support, please upload other image", gr.update()
    elif image.mode == "RGBA":
        data = np.array(image)
        alpha_channel = data[:, :, 3]
        unique_alpha_values = np.unique(alpha_channel)
        if len(unique_alpha_values) == 1:
            msg = "The alpha channel is missing or invalid. The background removal option is selected for you."
            return msg, gr.update(value=True, interactive=False)
        else:
            msg = "The image has four channels, and you can choose to remove the background or not."
            return msg, gr.update(value=False, interactive=True)
    elif image.mode == "RGB":
        msg = "The alpha channel is missing or invalid. The background removal option is selected for you."
        return msg, gr.update(value=True, interactive=False)
    else:
        raise Exception("Image Error")
    

def update_mode(mode):
    color_change = {
        'Vertex color': gr.update(value='vertex'),
        'Face color': gr.update(value='face'),
        'Baking': gr.update(value='face')
    }[mode]
    bake_change = {
        'Vertex color': gr.update(value=False, interactive=False, visible=False),
        'Face color': gr.update(value=False),
        'Baking': gr.update(value=BAKE_AVAILEBLE)
    }[mode]
    face_change = {
        'Vertex color': gr.update(value=120000, maximum=300000),
        'Face color': gr.update(value=60000, maximum=300000),
        'Baking': gr.update(value=10000, maximum=60000)
    }[mode]
    render_change = {
        'Vertex color': gr.update(value=False, interactive=False, visible=False),
        'Face color': gr.update(value=True),
        'Baking': gr.update(value=True)
    }[mode]
    return color_change, bake_change, face_change, render_change
    
# ===============================================================
# gradio display
# ===============================================================

with gr.Blocks() as demo:
    gr.Markdown(CONST_HEADER)
    with gr.Row(variant="panel"):
        with gr.Column(scale=2):
            with gr.Tab("Text to 3D"):
                with gr.Column():
                    text = gr.TextArea('一只黑白相间的熊猫在白色背景上居中坐着,呈现出卡通风格和可爱氛围。', 
                                       lines=3, max_lines=20, label='Input text (within 70 words)')
                with gr.Row():
                    gr.Examples(examples=example_ts, inputs=[text], label="Text examples", examples_per_page=10)
                with gr.Row():
                    textgen_submit = gr.Button("Generate", variant="primary") 

            with gr.Tab("Image to 3D"):
                with gr.Row():
                    input_image = gr.Image(label="Input image", width=256, height=256, type="pil",
                                           image_mode="RGBA", sources="upload", interactive=True)
                with gr.Row():
                    alert_message = gr.Markdown("")  # for warning 
                with gr.Row():
                    gr.Examples(examples=example_is,  inputs=[input_image], 
                        label="Img examples", examples_per_page=10)
                with gr.Row():
                    removebg = gr.Checkbox(
                        label="Remove Background", 
                        value=True, 
                        interactive=True
                    )
                    imggen_submit = gr.Button("Generate", variant="primary")

            mode = gr.Radio(
                choices=['Vertex color', 'Face color', 'Baking'], 
                label="Texture mode",
                value='Baking',
                interactive=True
            )

            with gr.Accordion("Custom settings", open=False):
                color = gr.Radio(choices=["vertex", "face"], label="Color", value="face")
                with gr.Row():

                    render = gr.Checkbox(
                        label="Do Rendering", 
                        value=True, 
                        interactive=True
                    )
                    bake = gr.Checkbox(
                        label="Do Baking", 
                        value=True if BAKE_AVAILEBLE else False, 
                        interactive=True if BAKE_AVAILEBLE else False
                    )

                with gr.Row():
                    seed = gr.Number(value=0, label="T2I seed", precision=0, interactive=True)
                    SEED = gr.Number(value=0, label="Gen seed", precision=0, interactive=True)

                step = gr.Slider(
                    value=25,
                    minimum=15,
                    maximum=50,
                    step=1,
                    label="T2I steps",
                    interactive=True
                )
                STEP = gr.Slider(
                    value=50,
                    minimum=20,
                    maximum=80,
                    step=1,
                    label="Gen steps",
                    interactive=True
                )
                max_faces = gr.Slider(
                    value=10000,
                    minimum=2000,
                    maximum=60000,
                    step=1000,
                    label="Face number limit",
                    interactive=True
                )

                with gr.Accordion("Baking Options", open=False):
                    force_bake = gr.Checkbox(
                            label="Force (Ignore the degree of matching)", 
                            value=False, 
                            interactive=True
                        )
                    front_baking = gr.Radio(
                        choices=['input image', 'multi-view front view', 'auto'], 
                        label="Front view baking",
                        value='auto',
                        interactive=True,
                        visible=True
                    )
                    other_views = gr.CheckboxGroup(
                        choices=['60°', '120°', '180°', '240°', '300°'], 
                        label="Other views baking",
                        value=['180°'],
                        interactive=True,
                        visible=True
                    )
                    align_times =gr.Slider(
                        value=1,
                        minimum=1,
                        maximum=5,
                        step=1,
                        label="Number of alignment attempts per view",
                        interactive=True
                    )

            input_image.change(
                fn=check_image_available, 
                inputs=input_image, 
                outputs=[alert_message, removebg]
            )

            mode.change(
                fn=update_mode,
                inputs=mode, 
                outputs=[color, bake, max_faces, render]
            )

            gr.Markdown(CONST_NOTE)

        ###### Output region

        with gr.Column(scale=3):
            with gr.Row():
                with gr.Column(scale=2):
                    rembg_image = gr.Image(
                        label="Image without background", 
                        type="pil",
                        image_mode="RGBA", 
                        interactive=False
                    )
                with gr.Column(scale=3):
                    result_image = gr.Image(
                        label="Multi-view images", 
                        type="pil", 
                        interactive=False
                    )

            result_3dobj = gr.Model3D(
                clear_color=[0.0, 0.0, 0.0, 0.0],
                label="OBJ vertex color",
                show_label=True,
                visible=True,
                camera_position=[90, 90, None],
                interactive=False
            )

            result_3dglb_texture = gr.Model3D(
                clear_color=[0.0, 0.0, 0.0, 0.0],
                label="GLB face color",
                show_label=True,
                visible=True,
                camera_position=[90, 90, None],
                interactive=False)

            result_3dglb_baked = gr.Model3D(
                clear_color=[0.0, 0.0, 0.0, 0.0],
                label="GLB baking",
                show_label=True,
                visible=True,
                camera_position=[90, 90, None],
                interactive=False)

            result_gif = gr.Image(label="GIF", interactive=False)

            with gr.Row():
                gr.Markdown(
                    "Due to Gradio limitations, OBJ files are displayed with vertex shading only, "
                    "while GLB files can be viewed with face color. <br>For the best experience, "
                    "we recommend downloading the GLB files and opening them with 3D software "
                    "like Blender or MeshLab."
                )

    #===============================================================
    # gradio running code
    #===============================================================

    none = gr.State(None)

    textgen_submit.click(
        fn=gen_pipe,
        inputs=[text, none, removebg, seed, step, SEED, STEP, color, bake, render, max_faces, force_bake,
                front_baking, other_views, align_times],
        outputs=[rembg_image, result_image, result_3dobj, result_3dglb_texture, result_3dglb_baked, result_gif],
    )

    imggen_submit.click(
        fn=gen_pipe,
        inputs=[none, input_image, removebg, seed, step, SEED, STEP, color, bake, render, max_faces, force_bake,
                front_baking, other_views, align_times],
        outputs=[rembg_image, result_image, result_3dobj, result_3dglb_texture, result_3dglb_baked, result_gif],
    )

    demo.queue(max_size=1)    
    # demo.launch(server_name='0.0.0.0', server_port=8080)
    demo.launch()