Spaces:
Running
on
L40S
Running
on
L40S
## Steps to reproduce synthetic training data using the Habitat-Sim simulator | |
### Create a conda environment | |
```bash | |
conda create -n habitat python=3.8 habitat-sim=0.2.1 headless=2.0 -c aihabitat -c conda-forge | |
conda active habitat | |
conda install pytorch -c pytorch | |
pip install opencv-python tqdm | |
``` | |
or (if you get the error `For headless systems, compile with --headless for EGL support`) | |
``` | |
git clone --branch stable https://github.com/facebookresearch/habitat-sim.git | |
cd habitat-sim | |
conda create -n habitat python=3.9 cmake=3.14.0 | |
conda activate habitat | |
pip install . -v | |
conda install pytorch -c pytorch | |
pip install opencv-python tqdm | |
``` | |
### Download Habitat-Sim scenes | |
Download Habitat-Sim scenes: | |
- Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md | |
- We used scenes from the HM3D, habitat-test-scenes, ReplicaCad and ScanNet datasets. | |
- Please put the scenes in a directory `$SCENES_DIR` following the structure below: | |
(Note: the habitat-sim dataset installer may install an incompatible version for ReplicaCAD backed lighting. | |
The correct scene dataset can be dowloaded from Huggingface: `git clone git@hf.co:datasets/ai-habitat/ReplicaCAD_baked_lighting`). | |
``` | |
$SCENES_DIR/ | |
├──hm3d/ | |
├──gibson/ | |
├──habitat-test-scenes/ | |
├──ReplicaCAD_baked_lighting/ | |
└──scannet/ | |
``` | |
### Download renderings metadata | |
Download metadata corresponding to each scene and extract them into a directory `$METADATA_DIR` | |
```bash | |
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/habitat_5views_v1_512x512_metadata.tar.gz | |
tar -xvzf habitat_5views_v1_512x512_metadata.tar.gz | |
``` | |
### Render the scenes | |
Render the scenes in an output directory `$OUTPUT_DIR` | |
```bash | |
export METADATA_DIR="/path/to/habitat/5views_v1_512x512_metadata" | |
export SCENES_DIR="/path/to/habitat/data/scene_datasets/" | |
export OUTPUT_DIR="data/habitat_processed" | |
cd datasets_preprocess/habitat/ | |
export PYTHONPATH=$(pwd) | |
# Print commandlines to generate images corresponding to each scene | |
python preprocess_habitat.py --scenes_dir=$SCENES_DIR --metadata_dir=$METADATA_DIR --output_dir=$OUTPUT_DIR | |
# Launch these commandlines in parallel e.g. using GNU-Parallel as follows: | |
python preprocess_habitat.py --scenes_dir=$SCENES_DIR --metadata_dir=$METADATA_DIR --output_dir=$OUTPUT_DIR | parallel -j 16 | |
``` | |
### Make a list of scenes | |
```bash | |
python find_scenes.py --root $OUTPUT_DIR | |
``` |