Spaces:
Running
Running
File size: 4,141 Bytes
3a75737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import transformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers import AutoModelForSeq2SeqLM, pipeline
from huggingface_hub import login
import gradio as gr
import numpy as np
new_model = "tensorgirl/finetuned-gemma"
model = AutoModelForCausalLM.from_pretrained(new_model, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(new_model, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
generator = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
device = 0 if torch.cuda.is_available() else -1
def translate(text, src_lang, tgt_lang):
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, max_length=400, device=device)
result = translation_pipeline(text)
return result[0]['translation_text']
def English(audio):
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
sr, y = audio
y = y.astype(np.float32)
y = np.max(np.abs(y))
return transcriber({"sampling_rate": sr, "raw": y})["text"]
def Hindi(audio):
transcriber = pipeline("automatic-speech-recognition", model="theainerd/Wav2Vec2-large-xlsr-hindi")
sr, y = audio
y = y.astype(np.float32)
y = np.max(np.abs(y))
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
return translate(text, "hin_Deva", "eng_Latn")
def Telegu(audio):
transcriber = pipeline("automatic-speech-recognition", model="anuragshas/wav2vec2-large-xlsr-53-telugu")
sr, y = audio
y = y.astype(np.float32)
y = np.max(np.abs(y))
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
return translate(text, "tel_Telu", "eng_Latn")
def Tamil(audio):
transcriber = pipeline("automatic-speech-recognition", model="Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
sr, y = audio
y = y.astype(np.float32)
y = np.max(np.abs(y))
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
return translate(text, "tam_Taml", "eng_Latn")
def Kannada(audio):
transcriber = pipeline("automatic-speech-recognition", model="vasista22/whisper-kannada-medium")
sr, y = audio
y = y.astype(np.float32)
y = np.max(np.abs(y))
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
return translate(text, "kan_Knda", "eng_Latn")
def predict(audio, language):
if language == English:
message = English(audio)
if language == Hindi:
message = Hindi(audio)
if language == Telegu:
message = Telegu(audio)
if language == Tamil:
message = Tamil(audio)
if language == Kannada:
message = Kannada(audio)
print(message)
sequences = generator(
message,
max_length=200,
do_sample=False,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,)
answer = ""
for seq in sequences:
answer = answer + seq['generated_text'] + " "
print(answer)
if language == English:
return answer
if language == Hindi:
return translate(text,eng_Latn, hin_Deva)
if language == Telegu:
return translate(text,eng_Latn, tel_Telu)
if language == Tamil:
return translate(text, eng_Latn, tam_Taml)
if language == Kannada:
return translate(text, eng_Latn, kan_Knda)
return answer
demo = gr.Interface(
predict,
[gr.Audio(),
gr.Dropdown(
["Hindi", "Telegu", "Tamil", "Kannada", "English"], label="Language", info="Please select language of your choice"
)],
"text",
title = "Farmers-Helper-Bot",
description = "Ask your queries in your regional Language",
theme=gr.themes.Soft()
)
demo.launch(share=True) |