Spaces:
Runtime error
Runtime error
File size: 18,902 Bytes
869c0ac 02a7301 869c0ac 08f112b 869c0ac 0954180 869c0ac 08f112b 869c0ac 08f112b 869c0ac e66133f 869c0ac d80e37b e66133f 869c0ac 43ebb3b 08f112b 43ebb3b d68360d 43ebb3b 4734cf5 43ebb3b aedf71e 08f112b aedf71e 600e950 8741d10 600e950 8741d10 d787bde aedf71e 869c0ac 08f112b 869c0ac 08f112b 869c0ac f30235e b7c9dfd 44050e3 869c0ac 08f112b 869c0ac 08f112b 869c0ac e66133f da20094 869c0ac d533c9c 869c0ac e66133f 072978d e66133f 01c4a98 4033ea7 01c4a98 4033ea7 e66133f d68360d da20094 4033ea7 e66133f a71fd34 9fca2a2 e66133f 4033ea7 a71fd34 e66133f 4033ea7 9fca2a2 ea68dfd f67abdb ea68dfd f67abdb ea68dfd 4033ea7 ea68dfd 9fca2a2 5e9c370 9fca2a2 5e9c370 9fca2a2 ea68dfd 9fca2a2 da472c4 ea68dfd da472c4 b7c9dfd da472c4 9fca2a2 f67abdb 5e9c370 9fca2a2 f67abdb 9fca2a2 f67abdb 9fca2a2 ffb86f0 0ff9228 297ea1f d80e37b b7c9dfd ea68dfd d68360d 072978d 212ab44 ea68dfd f67abdb d80e37b 9fca2a2 d80e37b f67abdb b7c9dfd ea68dfd f67abdb 5e9c370 7e864d5 f67abdb 7e864d5 f67abdb 7e864d5 d80e37b 7e864d5 e94fc5c 7e864d5 43ebb3b d68360d 7e864d5 869c0ac 43ebb3b 4734cf5 43ebb3b f30235e 43ebb3b 869c0ac 43ebb3b 4734cf5 43ebb3b 869c0ac 43ebb3b 869c0ac e66133f 43ebb3b 869c0ac e66133f 869c0ac 43ebb3b 3ae9402 869c0ac e66133f 43ebb3b 869c0ac e66133f 869c0ac e868325 43ebb3b 3ae9402 43ebb3b e94fc5c 43ebb3b 940551e 43ebb3b 3ae9402 43ebb3b 869c0ac da20094 a71fd34 5ecf3c1 a71fd34 5ecf3c1 a71fd34 d80e37b a71fd34 5ecf3c1 a71fd34 f30235e a71fd34 5ecf3c1 a71fd34 d68360d a71fd34 5ecf3c1 a71fd34 d68360d a71fd34 5ecf3c1 a71fd34 5ecf3c1 a71fd34 5ecf3c1 f30235e 5ecf3c1 a71fd34 5ecf3c1 a71fd34 5ecf3c1 f30235e 5ecf3c1 a71fd34 5ecf3c1 a71fd34 5ecf3c1 a71fd34 3ae9402 a71fd34 da20094 5ecf3c1 da20094 869c0ac a71fd34 869c0ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
{
"cells": [
{
"cell_type": "markdown",
"id": "62c5865f",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c7800a6",
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" # are we running on Google Colab?\n",
" import google.colab\n",
" !git clone -q https://github.com/teticio/audio-diffusion.git\n",
" %cd audio-diffusion\n",
" %pip install -q -r requirements.txt\n",
"except:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b447e2c4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"sys.path.insert(0, os.path.dirname(os.path.abspath(\"\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2fc0e7a",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import random\n",
"import librosa\n",
"import numpy as np\n",
"from datasets import load_dataset\n",
"from IPython.display import Audio\n",
"from audiodiffusion import AudioDiffusion"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b294a94a",
"metadata": {},
"outputs": [],
"source": [
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"generator = torch.Generator(device=device)"
]
},
{
"cell_type": "markdown",
"id": "f3feb265",
"metadata": {},
"source": [
"## DDPM (De-noising Diffusion Probabilistic Models)"
]
},
{
"cell_type": "markdown",
"id": "7fd945bb",
"metadata": {},
"source": [
"### Select model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97f24046",
"metadata": {},
"outputs": [],
"source": [
"#@markdown teticio/audio-diffusion-256 - trained on my Spotify \"liked\" playlist\n",
"\n",
"#@markdown teticio/audio-diffusion-breaks-256 - trained on samples used in music\n",
"\n",
"#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n",
"\n",
"model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\", \"teticio/audio-diffusion-ddim-256\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3d45c36",
"metadata": {},
"outputs": [],
"source": [
"audio_diffusion = AudioDiffusion(model_id=model_id)\n",
"mel = audio_diffusion.pipe.mel"
]
},
{
"cell_type": "markdown",
"id": "011fb5a1",
"metadata": {},
"source": [
"### Run model inference to generate mel spectrogram, audios and loops"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b809fed5",
"metadata": {},
"outputs": [],
"source": [
"for _ in range(10):\n",
" seed = generator.seed()\n",
" print(f'Seed = {seed}')\n",
" generator.manual_seed(seed)\n",
" image, (sample_rate,\n",
" audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" generator=generator)\n",
" display(image)\n",
" display(Audio(audio, rate=sample_rate))\n",
" loop = AudioDiffusion.loop_it(audio, sample_rate)\n",
" if loop is not None:\n",
" display(Audio(loop, rate=sample_rate))\n",
" else:\n",
" print(\"Unable to determine loop points\")"
]
},
{
"cell_type": "markdown",
"id": "0bb03e33",
"metadata": {},
"source": [
"### Generate variations of audios"
]
},
{
"cell_type": "markdown",
"id": "80e5b5fa",
"metadata": {},
"source": [
"Try playing around with `start_steps`. Values closer to zero will produce new samples, while values closer to 1,000 will produce samples more faithful to the original."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5074ec11",
"metadata": {},
"outputs": [],
"source": [
"seed = 2391504374279719 #@param {type:\"integer\"}\n",
"generator.manual_seed(seed)\n",
"image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" generator=generator)\n",
"display(image)\n",
"display(Audio(audio, rate=sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a0fefe28",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"start_step = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
"track = AudioDiffusion.loop_it(audio, sample_rate, loops=1)\n",
"for variation in range(12):\n",
" image2, (\n",
" sample_rate,\n",
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=audio, start_step=start_step)\n",
" display(image2)\n",
" display(Audio(audio2, rate=sample_rate))\n",
" track = np.concatenate(\n",
" [track, AudioDiffusion.loop_it(audio2, sample_rate, loops=1)])\n",
"display(Audio(track, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "58a876c1",
"metadata": {},
"source": [
"### Generate continuations (\"out-painting\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b95d5780",
"metadata": {},
"outputs": [],
"source": [
"overlap_secs = 2 #@param {type:\"integer\"}\n",
"start_step = 0 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
"overlap_samples = overlap_secs * sample_rate\n",
"track = audio\n",
"for variation in range(12):\n",
" image2, (\n",
" sample_rate,\n",
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=audio[-overlap_samples:],\n",
" start_step=start_step,\n",
" mask_start_secs=overlap_secs)\n",
" display(image2)\n",
" display(Audio(audio2, rate=sample_rate))\n",
" track = np.concatenate([track, audio2[overlap_samples:]])\n",
" audio = audio2\n",
"display(Audio(track, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "b6434d3f",
"metadata": {},
"source": [
"### Remix (style transfer)"
]
},
{
"cell_type": "markdown",
"id": "0da030b2",
"metadata": {},
"source": [
"Alternatively, you can start from another audio altogether, resulting in a kind of style transfer. Maintaining the same seed during generation fixes the style, while masking helps stitch consecutive segments together more smoothly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc620a80",
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" # are we running on Google Colab?\n",
" from google.colab import files\n",
" audio_file = list(files.upload().keys())[0]\n",
"except:\n",
" audio_file = \"/home/teticio/Music/liked/El Michels Affair - Glaciers Of Ice.mp3\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a257e69",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"start_step = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
"overlap_secs = 2 #@param {type:\"integer\"}\n",
"track_audio, _ = librosa.load(audio_file, mono=True, sr=mel.get_sample_rate())\n",
"overlap_samples = overlap_secs * sample_rate\n",
"slice_size = mel.x_res * mel.hop_length\n",
"stride = slice_size - overlap_samples\n",
"generator = torch.Generator(device=device)\n",
"seed = generator.seed()\n",
"print(f'Seed = {seed}')\n",
"track = np.array([])\n",
"not_first = 0\n",
"for sample in range(len(track_audio) // stride):\n",
" generator.manual_seed(seed)\n",
" audio = np.array(track_audio[sample * stride:sample * stride + slice_size])\n",
" if not_first:\n",
" # Normalize and re-insert generated audio\n",
" audio[:overlap_samples] = audio2[-overlap_samples:] * np.max(\n",
" audio[:overlap_samples]) / np.max(audio2[-overlap_samples:])\n",
" _, (sample_rate,\n",
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=audio,\n",
" start_step=start_step,\n",
" generator=generator,\n",
" mask_start_secs=overlap_secs * not_first)\n",
" track = np.concatenate([track, audio2[overlap_samples * not_first:]])\n",
" not_first = 1\n",
" display(Audio(track, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "924ff9d5",
"metadata": {},
"source": [
"### Fill the gap (\"in-painting\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0200264c",
"metadata": {},
"outputs": [],
"source": [
"slice = 3 #@param {type:\"integer\"}\n",
"raw_audio = track_audio[sample * stride:sample * stride + slice_size]\n",
"_, (sample_rate,\n",
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
" raw_audio=raw_audio,\n",
" mask_start_secs=1,\n",
" mask_end_secs=1,\n",
" step_generator=torch.Generator(device=device))\n",
"display(Audio(audio, rate=sample_rate))\n",
"display(Audio(audio2, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "efc32dae",
"metadata": {},
"source": [
"## DDIM (De-noising Diffusion Implicit Models)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a021f78a",
"metadata": {},
"outputs": [],
"source": [
"audio_diffusion = AudioDiffusion(model_id='teticio/audio-diffusion-ddim-256')\n",
"mel = audio_diffusion.pipe.mel"
]
},
{
"cell_type": "markdown",
"id": "deb23339",
"metadata": {},
"source": [
"### Generation can be done in many fewer steps with DDIMs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c105a497",
"metadata": {},
"outputs": [],
"source": [
"for _ in range(10):\n",
" seed = generator.seed()\n",
" print(f'Seed = {seed}')\n",
" generator.manual_seed(seed)\n",
" image, (sample_rate,\n",
" audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" generator=generator)\n",
" display(image)\n",
" display(Audio(audio, rate=sample_rate))\n",
" loop = AudioDiffusion.loop_it(audio, sample_rate)\n",
" if loop is not None:\n",
" display(Audio(loop, rate=sample_rate))\n",
" else:\n",
" print(\"Unable to determine loop points\")"
]
},
{
"cell_type": "markdown",
"id": "cab4692c",
"metadata": {},
"source": [
"The parameter eta controls the variance:\n",
"* 0 - DDIM (deterministic)\n",
"* 1 - DDPM (De-noising Diffusion Probabilistic Model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "72bdd207",
"metadata": {},
"outputs": [],
"source": [
"image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" steps=1000, generator=generator, eta=1)\n",
"display(image)\n",
"display(Audio(audio, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "b8d5442c",
"metadata": {},
"source": [
"### DDIMs can be used as encoders..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "269ee816",
"metadata": {},
"outputs": [],
"source": [
"# Doesn't have to be an audio from the train dataset, this is just for convenience\n",
"ds = load_dataset('teticio/audio-diffusion-256')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "278d1d80",
"metadata": {},
"outputs": [],
"source": [
"image = ds['train'][264]['image']\n",
"display(Audio(mel.image_to_audio(image), rate=sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "912b54e4",
"metadata": {},
"outputs": [],
"source": [
"noise = audio_diffusion.pipe.encode([image])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c7b31f97",
"metadata": {},
"outputs": [],
"source": [
"# Reconstruct original audio from noise\n",
"_, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" noise=noise, generator=generator)\n",
"display(Audio(audio, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "998c776b",
"metadata": {},
"source": [
"### ...or to interpolate between audios"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "33f82367",
"metadata": {},
"outputs": [],
"source": [
"image2 = ds['train'][15978]['image']\n",
"display(Audio(mel.image_to_audio(image2), rate=sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f93fb6c0",
"metadata": {},
"outputs": [],
"source": [
"noise2 = audio_diffusion.pipe.encode([image2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a4190563",
"metadata": {},
"outputs": [],
"source": [
"alpha = 0.5 #@param {type:\"slider\", min:0, max:1, step:0.1}\n",
"_, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" noise=audio_diffusion.pipe.slerp(noise, noise2, alpha),\n",
" generator=generator)\n",
"display(Audio(mel.image_to_audio(image), rate=sample_rate))\n",
"display(Audio(mel.image_to_audio(image2), rate=sample_rate))\n",
"display(Audio(audio, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "9b244547",
"metadata": {},
"source": [
"## Latent Audio Diffusion\n",
"Instead of de-noising images directly in the pixel space, we can work in the latent space of a pre-trained VAE (Variational AutoEncoder). This is much faster to train and run inference on, although the quality suffers as there are now three stages involved in encoding / decoding: mel spectrogram, VAE and de-noising."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a88b3fbb",
"metadata": {},
"outputs": [],
"source": [
"model_id = \"teticio/latent-audio-diffusion-ddim-256\" #@param [\"teticio/latent-audio-diffusion-256\", \"teticio/latent-audio-diffusion-ddim-256\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15e353ee",
"metadata": {},
"outputs": [],
"source": [
"audio_diffusion = AudioDiffusion(model_id=model_id)\n",
"mel = audio_diffusion.pipe.mel"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa0f0c8c",
"metadata": {},
"outputs": [],
"source": [
"seed = 3412253600050855 #@param {type:\"integer\"}\n",
"generator.manual_seed(seed)\n",
"image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n",
" generator=generator)\n",
"display(image)\n",
"display(Audio(audio, rate=sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "73dc575d",
"metadata": {},
"outputs": [],
"source": [
"seed2 = 7016114633369557 #@param {type:\"integer\"}\n",
"generator.manual_seed(seed2)\n",
"image2, (sample_rate, audio2) = audio_diffusion.generate_spectrogram_and_audio(\n",
" generator=generator)\n",
"display(image2)\n",
"display(Audio(audio2, rate=sample_rate))"
]
},
{
"cell_type": "markdown",
"id": "428d2d67",
"metadata": {},
"source": [
"### Interpolation in latent space\n",
"As the VAE forces a more compact, lower dimensional representation for the spectrograms, interpolation in latent space can lead to meaningful combinations of audios. In combination with the (deterministic) DDIM from the previous section, the model can be used as an encoder / decoder to a lower dimensional space."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "72211c2b",
"metadata": {},
"outputs": [],
"source": [
"generator.manual_seed(seed)\n",
"latents = torch.randn((1, audio_diffusion.pipe.unet.in_channels,\n",
" audio_diffusion.pipe.unet.sample_size[0],\n",
" audio_diffusion.pipe.unet.sample_size[1]),\n",
" device=device,\n",
" generator=generator)\n",
"latents.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c732dbe",
"metadata": {},
"outputs": [],
"source": [
"generator.manual_seed(seed2)\n",
"latents2 = torch.randn((1, audio_diffusion.pipe.unet.in_channels,\n",
" audio_diffusion.pipe.unet.sample_size[0],\n",
" audio_diffusion.pipe.unet.sample_size[1]),\n",
" device=device,\n",
" generator=generator)\n",
"latents2.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "159bcfc4",
"metadata": {},
"outputs": [],
"source": [
"alpha = 0.5 #@param {type:\"slider\", min:0, max:1, step:0.1}\n",
"_, (sample_rate, audio3) = audio_diffusion.generate_spectrogram_and_audio(\n",
" noise=audio_diffusion.pipe.slerp(latents, latents2, alpha),\n",
" generator=generator)\n",
"display(Audio(audio, rate=sample_rate))\n",
"display(Audio(audio2, rate=sample_rate))\n",
"display(Audio(audio3, rate=sample_rate))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce6c9cc1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "huggingface",
"language": "python",
"name": "huggingface"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|