Spaces:
Runtime error
Runtime error
File size: 7,054 Bytes
f8a240c 3e8b723 f29faf1 3e8b723 f29faf1 3e8b723 f29faf1 3e8b723 f29faf1 3e8b723 f29faf1 8a3fb2e 3e8b723 13aa297 3e8b723 13aa297 8aa7c27 f29faf1 8aa7c27 f29faf1 3e8b723 f29faf1 13aa297 f29faf1 3e8b723 13aa297 3e8b723 13aa297 3e8b723 f29faf1 3e8b723 f29faf1 3e8b723 d76bdef 327bccf 5bc60f9 d76bdef 8aa7c27 d76bdef f29faf1 d76bdef 327bccf f29faf1 327bccf 3e8b723 d76bdef f29faf1 d76bdef 3e8b723 d76bdef f29faf1 3e8b723 f29faf1 d76bdef 327bccf f29faf1 3e8b723 f29faf1 3e8b723 f29faf1 8aa7c27 d122744 8aa7c27 f29faf1 8aa7c27 f29faf1 8aa7c27 f29faf1 8aa7c27 3e8b723 8aa7c27 f29faf1 13aa297 5bc60f9 529c646 a8d2b62 3e8b723 8aa7c27 13aa297 f29faf1 3e8b723 8aa7c27 3e8b723 8aa7c27 b3e97c5 8aa7c27 f29faf1 3e8b723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# based on https://github.com/CompVis/stable-diffusion/blob/main/main.py
import argparse
import os
import numpy as np
import pytorch_lightning as pl
import torch
import torchvision
from datasets import load_dataset, load_from_disk
from diffusers.pipelines.audio_diffusion import Mel
from ldm.util import instantiate_from_config
from librosa.util import normalize
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning.callbacks import Callback, ModelCheckpoint
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.utilities.distributed import rank_zero_only
from torch.utils.data import DataLoader, Dataset
from audiodiffusion.utils import convert_ldm_to_hf_vae
class AudioDiffusion(Dataset):
def __init__(self, model_id, channels=3):
super().__init__()
self.channels = channels
if os.path.exists(model_id):
self.hf_dataset = load_from_disk(model_id)["train"]
else:
self.hf_dataset = load_dataset(model_id)["train"]
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
image = self.hf_dataset[idx]["image"]
if self.channels == 3:
image = image.convert("RGB")
image = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width, self.channels))
image = (image / 255) * 2 - 1
return {"image": image}
class AudioDiffusionDataModule(pl.LightningDataModule):
def __init__(self, model_id, batch_size, channels):
super().__init__()
self.batch_size = batch_size
self.dataset = AudioDiffusion(model_id=model_id, channels=channels)
self.num_workers = 1
def train_dataloader(self):
return DataLoader(self.dataset, batch_size=self.batch_size, num_workers=self.num_workers)
class ImageLogger(Callback):
def __init__(self, every=1000, hop_length=512, sample_rate=22050, n_fft=2048):
super().__init__()
self.every = every
self.hop_length = hop_length
self.sample_rate = sample_rate
self.n_fft = n_fft
@rank_zero_only
def log_images_and_audios(self, pl_module, batch):
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch, split="train")
pl_module.train()
image_shape = next(iter(images.values())).shape
channels = image_shape[1]
mel = Mel(
x_res=image_shape[2],
y_res=image_shape[3],
hop_length=self.hop_length,
sample_rate=self.sample_rate,
n_fft=self.n_fft,
)
for k in images:
images[k] = images[k].detach().cpu()
images[k] = torch.clamp(images[k], -1.0, 1.0)
images[k] = (images[k] + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = torchvision.utils.make_grid(images[k])
tag = f"train/{k}"
pl_module.logger.experiment.add_image(tag, grid, global_step=pl_module.global_step)
images[k] = (images[k].numpy() * 255).round().astype("uint8").transpose(0, 2, 3, 1)
for _, image in enumerate(images[k]):
audio = mel.image_to_audio(
Image.fromarray(image, mode="RGB").convert("L")
if channels == 3
else Image.fromarray(image[:, :, 0])
)
pl_module.logger.experiment.add_audio(
tag + f"/{_}",
normalize(audio),
global_step=pl_module.global_step,
sample_rate=mel.get_sample_rate(),
)
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if (batch_idx + 1) % self.every != 0:
return
self.log_images_and_audios(pl_module, batch)
class HFModelCheckpoint(ModelCheckpoint):
def __init__(self, ldm_config, hf_checkpoint, *args, **kwargs):
super().__init__(*args, **kwargs)
self.ldm_config = ldm_config
self.hf_checkpoint = hf_checkpoint
self.sample_size = None
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
if self.sample_size is None:
self.sample_size = list(batch["image"].shape[1:3])
def on_train_epoch_end(self, trainer, pl_module):
ldm_checkpoint = self._get_metric_interpolated_filepath_name({"epoch": trainer.current_epoch}, trainer)
super().on_train_epoch_end(trainer, pl_module)
self.ldm_config.model.params.ddconfig.resolution = self.sample_size
convert_ldm_to_hf_vae(ldm_checkpoint, self.ldm_config, self.hf_checkpoint, self.sample_size)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train VAE using ldm.")
parser.add_argument("-d", "--dataset_name", type=str, default=None)
parser.add_argument("-b", "--batch_size", type=int, default=1)
parser.add_argument("-c", "--ldm_config_file", type=str, default="config/ldm_autoencoder_kl.yaml")
parser.add_argument("--ldm_checkpoint_dir", type=str, default="models/ldm-autoencoder-kl")
parser.add_argument("--hf_checkpoint_dir", type=str, default="models/autoencoder-kl")
parser.add_argument("-r", "--resume_from_checkpoint", type=str, default=None)
parser.add_argument("-g", "--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--hop_length", type=int, default=512)
parser.add_argument("--sample_rate", type=int, default=22050)
parser.add_argument("--n_fft", type=int, default=2048)
parser.add_argument("--save_images_batches", type=int, default=1000)
parser.add_argument("--max_epochs", type=int, default=100)
args = parser.parse_args()
config = OmegaConf.load(args.ldm_config_file)
model = instantiate_from_config(config.model)
model.learning_rate = config.model.base_learning_rate
data = AudioDiffusionDataModule(
model_id=args.dataset_name,
batch_size=args.batch_size,
channels=config.model.params.ddconfig.in_channels,
)
lightning_config = config.pop("lightning", OmegaConf.create())
trainer_config = lightning_config.get("trainer", OmegaConf.create())
trainer_config.accumulate_grad_batches = args.gradient_accumulation_steps
trainer_opt = argparse.Namespace(**trainer_config)
trainer = Trainer.from_argparse_args(
trainer_opt,
max_epochs=args.max_epochs,
resume_from_checkpoint=args.resume_from_checkpoint,
callbacks=[
ImageLogger(
every=args.save_images_batches,
hop_length=args.hop_length,
sample_rate=args.sample_rate,
n_fft=args.n_fft,
),
HFModelCheckpoint(
ldm_config=config,
hf_checkpoint=args.hf_checkpoint_dir,
dirpath=args.ldm_checkpoint_dir,
filename="{epoch:06}",
verbose=True,
save_last=True,
),
],
)
trainer.fit(model, data)
|