Spaces:
Sleeping
Sleeping
File size: 3,328 Bytes
f6ffde9 8aec0fe c41146d f6ffde9 8aec0fe c41146d 8aec0fe c41146d 8aec0fe c41146d 8aec0fe c41146d 8aec0fe c41146d 8aec0fe c41146d 8aec0fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import torch
from pynvml import * # needs restart of IDE to install, from nvidia-ml-py3
# Get device
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Streamlit setup
st.title("Telco Chat Bot")
st.page_link("https://github.com/Ali-maatouk/Tele-LLMs", label="Tele-LLMs backend", icon="π±")
# Add text giving credit
col1, col2 = st.columns(2)
if 'conversation' not in st.session_state:
st.session_state.conversation = []
user_input = st.text_input("You:", "") # user input
# Resource monitoring:
def print_gpu_utilization():
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
print(f"GPU memory occupied: {info.used//1024**2} MB.")
# Model functions:
@st.cache_resource(show_spinner=False)
def load_model():
""" Load model from Hugging face."""
print_gpu_utilization()
success_placeholder = st.empty()
with st.spinner("Loading model... please wait"):
#model_name = "AliMaatouk/TinyLlama-1.1B-Tele" # Replace with the correct model name
#model_name = "AliMaatouk/LLama-3-8B-Tele-it"
model_name = "AliMaatouk/Gemma-2B-Tele"
if str(DEVICE) == "cuda:0": # may not need this, need to test on CPU if device map is okay anyway
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
else:
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto")
model = AutoModelForCausalLM.from_pretrained(model_name).to(DEVICE)
success_placeholder.success("Model loaded successfully!", icon="π₯")
time.sleep(2)
success_placeholder.empty()
return model, tokenizer
def generate_response(user_input):
""" Query the model. """
success_placeholder = st.empty()
with st.spinner("Thinking..."):
inputs = tokenizer(user_input, return_tensors="pt").to(DEVICE)
#outputs = model.generate(**inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
outputs = model.generate(**inputs, max_new_tokens=750)
print_gpu_utilization()
generated_tokens = outputs[0, len(inputs['input_ids'][0]):]
success_placeholder.success("Response generated!", icon="β
")
time.sleep(2)
success_placeholder.empty()
text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return text
# RUNTIME EVENTS:
# Load model and tokenizer
model, tokenizer = load_model()
# Submit button to send the query
with col1:
if st.button("send"):
if user_input:
st.session_state.conversation.append({"role": "user", "content": user_input})
# Querying model
# Add a loading spinner during model loading
response = generate_response(user_input)
# Display bot response
st.session_state.conversation.append({"role": "bot", "content": response})
# Clear button to reset
with col2:
if st.button("clear chat"):
if user_input:
st.session_state.conversation = []
# Display conversation history
for chat in st.session_state.conversation:
if chat['role'] == 'user':
st.write(f"You: {chat['content']}")
else:
st.write(f"Bot: {chat['content']}") |