Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import time | |
import torch | |
from pynvml import * # needs restart of IDE to install, from nvidia-ml-py3 | |
# Get device | |
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Streamlit setup | |
st.title("Telco Chat Bot") | |
st.page_link("https://github.com/Ali-maatouk/Tele-LLMs", label="Tele-LLMs backend", icon="π±") | |
# Add text giving credit | |
col1, col2 = st.columns(2) | |
if 'conversation' not in st.session_state: | |
st.session_state.conversation = [] | |
user_input = st.text_input("You:", "") # user input | |
# Resource monitoring: | |
def print_gpu_utilization(): | |
nvmlInit() | |
handle = nvmlDeviceGetHandleByIndex(0) | |
info = nvmlDeviceGetMemoryInfo(handle) | |
print(f"GPU memory occupied: {info.used//1024**2} MB.") | |
# Model functions: | |
def load_model(): | |
""" Load model from Hugging face.""" | |
print_gpu_utilization() | |
success_placeholder = st.empty() | |
with st.spinner("Loading model... please wait"): | |
#model_name = "AliMaatouk/TinyLlama-1.1B-Tele" # Replace with the correct model name | |
#model_name = "AliMaatouk/LLama-3-8B-Tele-it" | |
model_name = "AliMaatouk/Gemma-2B-Tele" | |
if str(DEVICE) == "cuda:0": # may not need this, need to test on CPU if device map is okay anyway | |
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto", device_map="auto") | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype="auto") | |
model = AutoModelForCausalLM.from_pretrained(model_name).to(DEVICE) | |
success_placeholder.success("Model loaded successfully!", icon="π₯") | |
time.sleep(2) | |
success_placeholder.empty() | |
return model, tokenizer | |
def generate_response(user_input): | |
""" Query the model. """ | |
success_placeholder = st.empty() | |
with st.spinner("Thinking..."): | |
inputs = tokenizer(user_input, return_tensors="pt").to(DEVICE) | |
#outputs = model.generate(**inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
outputs = model.generate(**inputs, max_new_tokens=750) | |
print_gpu_utilization() | |
generated_tokens = outputs[0, len(inputs['input_ids'][0]):] | |
success_placeholder.success("Response generated!", icon="β ") | |
time.sleep(2) | |
success_placeholder.empty() | |
text = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
return text | |
# RUNTIME EVENTS: | |
# Load model and tokenizer | |
model, tokenizer = load_model() | |
# Submit button to send the query | |
with col1: | |
if st.button("send"): | |
if user_input: | |
st.session_state.conversation.append({"role": "user", "content": user_input}) | |
# Querying model | |
# Add a loading spinner during model loading | |
response = generate_response(user_input) | |
# Display bot response | |
st.session_state.conversation.append({"role": "bot", "content": response}) | |
# Clear button to reset | |
with col2: | |
if st.button("clear chat"): | |
if user_input: | |
st.session_state.conversation = [] | |
# Display conversation history | |
for chat in st.session_state.conversation: | |
if chat['role'] == 'user': | |
st.write(f"You: {chat['content']}") | |
else: | |
st.write(f"Bot: {chat['content']}") |