Spaces:
Runtime error
Runtime error
from constants import LCM_DEFAULT_MODEL | |
from diffusers import ( | |
DiffusionPipeline, | |
AutoencoderTiny, | |
UNet2DConditionModel, | |
LCMScheduler, | |
) | |
import torch | |
from backend.tiny_decoder import get_tiny_decoder_vae_model | |
from typing import Any | |
from diffusers import ( | |
LCMScheduler, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionXLImg2ImgPipeline, | |
AutoPipelineForText2Image, | |
AutoPipelineForImage2Image, | |
StableDiffusionControlNetPipeline, | |
) | |
def _get_lcm_pipeline_from_base_model( | |
lcm_model_id: str, | |
base_model_id: str, | |
use_local_model: bool, | |
): | |
pipeline = None | |
unet = UNet2DConditionModel.from_pretrained( | |
lcm_model_id, | |
torch_dtype=torch.float32, | |
local_files_only=use_local_model, | |
resume_download=True, | |
) | |
pipeline = DiffusionPipeline.from_pretrained( | |
base_model_id, | |
unet=unet, | |
torch_dtype=torch.float32, | |
local_files_only=use_local_model, | |
resume_download=True, | |
) | |
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) | |
return pipeline | |
def load_taesd( | |
pipeline: Any, | |
use_local_model: bool = False, | |
torch_data_type: torch.dtype = torch.float32, | |
): | |
vae_model = get_tiny_decoder_vae_model(pipeline.__class__.__name__) | |
pipeline.vae = AutoencoderTiny.from_pretrained( | |
vae_model, | |
torch_dtype=torch_data_type, | |
local_files_only=use_local_model, | |
) | |
def get_lcm_model_pipeline( | |
model_id: str = LCM_DEFAULT_MODEL, | |
use_local_model: bool = False, | |
pipeline_args={}, | |
): | |
pipeline = None | |
if model_id == "latent-consistency/lcm-sdxl": | |
pipeline = _get_lcm_pipeline_from_base_model( | |
model_id, | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
use_local_model, | |
) | |
elif model_id == "latent-consistency/lcm-ssd-1b": | |
pipeline = _get_lcm_pipeline_from_base_model( | |
model_id, | |
"segmind/SSD-1B", | |
use_local_model, | |
) | |
else: | |
# pipeline = DiffusionPipeline.from_pretrained( | |
pipeline = AutoPipelineForText2Image.from_pretrained( | |
model_id, | |
local_files_only=use_local_model, | |
**pipeline_args, | |
) | |
return pipeline | |
def get_image_to_image_pipeline(pipeline: Any) -> Any: | |
components = pipeline.components | |
pipeline_class = pipeline.__class__.__name__ | |
if ( | |
pipeline_class == "LatentConsistencyModelPipeline" | |
or pipeline_class == "StableDiffusionPipeline" | |
): | |
return StableDiffusionImg2ImgPipeline(**components) | |
elif pipeline_class == "StableDiffusionControlNetPipeline": | |
return AutoPipelineForImage2Image.from_pipe(pipeline) | |
elif pipeline_class == "StableDiffusionXLPipeline": | |
return StableDiffusionXLImg2ImgPipeline(**components) | |
else: | |
raise Exception(f"Unknown pipeline {pipeline_class}") | |