Spaces:
Running
Running
import gradio as gr | |
import requests | |
import base64 | |
import os | |
from PIL import Image | |
from io import BytesIO | |
import numpy as np | |
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata | |
from loadimg import load_img # Assicurati che questa funzione sia disponibile | |
def numpy_to_pil(image): | |
"""Convert a numpy array to a PIL Image.""" | |
if image.dtype == np.uint8: # Most common case | |
mode = "RGB" | |
else: | |
mode = "F" # Floating point | |
return Image.fromarray(image.astype('uint8'), mode) | |
def process_image(image): | |
image = numpy_to_pil(image) # Convert numpy array to PIL Image | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
response = requests.post( | |
os.getenv('BACKEND_URL'), | |
files={"file": ("image.png", base64.b64decode(img_str), "image/png")} | |
) | |
result = response.json() | |
processed_image_b64 = result["processed_image"] | |
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64))) | |
return [image, processed_image] # Return the original and processed images | |
# Carica l'esempio di immagine | |
chameleon = load_img("elephant.jpg", output_type="pil") | |
url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg" | |
image = gr.Image(label="Upload a photo") | |
output_slider = ImageSlider(label="Processed photo", type="pil") | |
demo = gr.Interface( | |
fn=process_image, | |
inputs=image, | |
outputs=output_slider, | |
title="Magic Eraser", | |
examples=[["elephant.jpg"]] # Esempio locale | |
) | |
if __name__ == "__main__": | |
demo.launch() |