Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL | |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
import requests | |
import base64 | |
import os | |
from PIL import Image | |
from io import BytesIO | |
from gradio_imageslider import ImageSlider # Assicurati di avere questa libreria installata | |
from loadimg import load_img # Assicurati che questa funzione sia disponibile | |
from dotenv import load_dotenv | |
# Carica le variabili di ambiente dal file .env | |
load_dotenv() | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) | |
torch.cuda.empty_cache() | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
output_folder = 'output_images' | |
if not os.path.exists(output_folder): | |
os.makedirs(output_folder) | |
def numpy_to_pil(image): | |
"""Convert a numpy array to a PIL Image.""" | |
if image.dtype == np.uint8: # Most common case | |
mode = "RGB" | |
else: | |
mode = "F" # Floating point | |
return Image.fromarray(image.astype('uint8'), mode) | |
def process_image(image): | |
image = numpy_to_pil(image) # Convert numpy array to PIL Image | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
response = requests.post( | |
os.getenv('BACKEND_URL'), | |
files={"file": ("image.png", base64.b64decode(img_str), "image/png")} | |
) | |
result = response.json() | |
processed_image_b64 = result["processed_image"] | |
processed_image = Image.open(BytesIO(base64.b64decode(processed_image_b64))) | |
image_path = os.path.join(output_folder, "no_bg_image.png") | |
processed_image.save(image_path) | |
return (processed_image, image), image_path | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, | |
progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
output_type="pil", | |
good_vae=good_vae, | |
): | |
img_np = np.array(img) | |
processed_images, image_path = process_image(img_np) | |
yield processed_images[0], seed, processed_images[1], image_path | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [dev] | |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Generated Image", show_label=False) | |
output_slider = ImageSlider(label="Processed Photo", type="pil") | |
output_file = gr.File(label="Output PNG file") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed, output_slider, output_file], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed, output_slider, output_file] | |
) | |
demo.launch() |