Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import sys | |
import shlex | |
import spaces | |
import torch | |
import uuid | |
import os | |
import json | |
from pathlib import Path | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
# install packages for mamba | |
def install_mamba(): | |
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) | |
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) | |
install_mamba() | |
MODEL = "tiiuae/Falcon3-Mamba-7B-Instruct" | |
TITLE = "<h1><center>Falcon3-Mamba-7B-Instruct playground</center></h1>" | |
SUB_TITLE = """<center>Playground of Falcon3-Mamba-7B-Instruct</center>""" | |
SYSTEM_PROMPT = os.getenv('SYSTEM_PROMPT') | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
/* Fix for chat container */ | |
.chat-container { | |
height: 600px !important; | |
overflow-y: auto !important; | |
flex-direction: column !important; | |
} | |
.messages-container { | |
flex-grow: 1 !important; | |
overflow-y: auto !important; | |
padding-right: 10px !important; | |
} | |
/* Ensure consistent height */ | |
.contain { | |
height: 100% !important; | |
} | |
""" | |
END_MESSAGE = """ | |
\n | |
**The conversation has reached to its end, please press "Clear" to restart a new conversation** | |
""" | |
device = "cuda" # for GPU usage or "cpu" for CPU usage | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL, | |
torch_dtype=torch.bfloat16, | |
).to(device) | |
if device == "cuda": | |
model = torch.compile(model) | |
def stream_chat( | |
message: str, | |
history: list, | |
temperature: float = 0.3, | |
max_new_tokens: int = 100, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
penalty: float = 1.2, | |
): | |
print(f'message: {message}') | |
print(f'history: {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": 'system', "content": SYSTEM_PROMPT }, | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=False if temperature == 0 else True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
streamer=streamer, | |
pad_token_id=11, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("\nUser", "") | |
buffer = buffer.replace("\nSystem", "") | |
yield buffer | |
print(f'response: {buffer}') | |
with gr.Blocks(css=CSS, theme="soft") as demo: | |
gr.HTML(TITLE) | |
gr.HTML(SUB_TITLE) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
chat_interface = gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=gr.Chatbot( | |
height=600, | |
container=True, | |
elem_classes=["chat-container"] | |
), | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False), | |
gr.Slider(minimum=128, maximum=32768, step=1, value=1024, label="Max new tokens", render=False), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False), | |
gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False), | |
gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False), | |
], | |
examples=[ | |
["Hello there, can you suggest few places to visit in UAE?"], | |
["What UAE is known for?"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |