tobiasc's picture
Initial commit
ad16788
raw
history blame contribute delete
No virus
19.6 kB
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""RNN sequence-to-sequence speech recognition model (pytorch)."""
import argparse
from itertools import groupby
import logging
import math
import os
import chainer
from chainer import reporter
import editdistance
import numpy as np
import six
import torch
from espnet.nets.asr_interface import ASRInterface
from espnet.nets.e2e_asr_common import label_smoothing_dist
from espnet.nets.pytorch_backend.ctc import ctc_for
from espnet.nets.pytorch_backend.frontends.feature_transform import (
feature_transform_for, # noqa: H301
)
from espnet.nets.pytorch_backend.frontends.frontend import frontend_for
from espnet.nets.pytorch_backend.initialization import lecun_normal_init_parameters
from espnet.nets.pytorch_backend.initialization import set_forget_bias_to_one
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.nets_utils import to_torch_tensor
from espnet.nets.pytorch_backend.rnn.argument import (
add_arguments_rnn_encoder_common, # noqa: H301
add_arguments_rnn_decoder_common, # noqa: H301
add_arguments_rnn_attention_common, # noqa: H301
)
from espnet.nets.pytorch_backend.rnn.attentions import att_for
from espnet.nets.pytorch_backend.rnn.decoders import decoder_for
from espnet.nets.pytorch_backend.rnn.encoders import encoder_for
from espnet.nets.scorers.ctc import CTCPrefixScorer
from espnet.utils.fill_missing_args import fill_missing_args
CTC_LOSS_THRESHOLD = 10000
class Reporter(chainer.Chain):
"""A chainer reporter wrapper."""
def report(self, loss_ctc, loss_att, acc, cer_ctc, cer, wer, mtl_loss):
"""Report at every step."""
reporter.report({"loss_ctc": loss_ctc}, self)
reporter.report({"loss_att": loss_att}, self)
reporter.report({"acc": acc}, self)
reporter.report({"cer_ctc": cer_ctc}, self)
reporter.report({"cer": cer}, self)
reporter.report({"wer": wer}, self)
logging.info("mtl loss:" + str(mtl_loss))
reporter.report({"loss": mtl_loss}, self)
class E2E(ASRInterface, torch.nn.Module):
"""E2E module.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
@staticmethod
def add_arguments(parser):
"""Add arguments."""
E2E.encoder_add_arguments(parser)
E2E.attention_add_arguments(parser)
E2E.decoder_add_arguments(parser)
return parser
@staticmethod
def encoder_add_arguments(parser):
"""Add arguments for the encoder."""
group = parser.add_argument_group("E2E encoder setting")
group = add_arguments_rnn_encoder_common(group)
return parser
@staticmethod
def attention_add_arguments(parser):
"""Add arguments for the attention."""
group = parser.add_argument_group("E2E attention setting")
group = add_arguments_rnn_attention_common(group)
return parser
@staticmethod
def decoder_add_arguments(parser):
"""Add arguments for the decoder."""
group = parser.add_argument_group("E2E decoder setting")
group = add_arguments_rnn_decoder_common(group)
return parser
def get_total_subsampling_factor(self):
"""Get total subsampling factor."""
if isinstance(self.enc, torch.nn.ModuleList):
return self.enc[0].conv_subsampling_factor * int(np.prod(self.subsample))
else:
return self.enc.conv_subsampling_factor * int(np.prod(self.subsample))
def __init__(self, idim, odim, args):
"""Construct an E2E object.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
super(E2E, self).__init__()
torch.nn.Module.__init__(self)
# fill missing arguments for compatibility
args = fill_missing_args(args, self.add_arguments)
self.mtlalpha = args.mtlalpha
assert 0.0 <= self.mtlalpha <= 1.0, "mtlalpha should be [0.0, 1.0]"
self.etype = args.etype
self.verbose = args.verbose
# NOTE: for self.build method
args.char_list = getattr(args, "char_list", None)
self.char_list = args.char_list
self.outdir = args.outdir
self.space = args.sym_space
self.blank = args.sym_blank
self.reporter = Reporter()
# below means the last number becomes eos/sos ID
# note that sos/eos IDs are identical
self.sos = odim - 1
self.eos = odim - 1
# subsample info
self.subsample = get_subsample(args, mode="asr", arch="rnn")
# label smoothing info
if args.lsm_type and os.path.isfile(args.train_json):
logging.info("Use label smoothing with " + args.lsm_type)
labeldist = label_smoothing_dist(
odim, args.lsm_type, transcript=args.train_json
)
else:
labeldist = None
if getattr(args, "use_frontend", False): # use getattr to keep compatibility
self.frontend = frontend_for(args, idim)
self.feature_transform = feature_transform_for(args, (idim - 1) * 2)
idim = args.n_mels
else:
self.frontend = None
# encoder
self.enc = encoder_for(args, idim, self.subsample)
# ctc
self.ctc = ctc_for(args, odim)
# attention
self.att = att_for(args)
# decoder
self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist)
# weight initialization
self.init_like_chainer()
# options for beam search
if args.report_cer or args.report_wer:
recog_args = {
"beam_size": args.beam_size,
"penalty": args.penalty,
"ctc_weight": args.ctc_weight,
"maxlenratio": args.maxlenratio,
"minlenratio": args.minlenratio,
"lm_weight": args.lm_weight,
"rnnlm": args.rnnlm,
"nbest": args.nbest,
"space": args.sym_space,
"blank": args.sym_blank,
}
self.recog_args = argparse.Namespace(**recog_args)
self.report_cer = args.report_cer
self.report_wer = args.report_wer
else:
self.report_cer = False
self.report_wer = False
self.rnnlm = None
self.logzero = -10000000000.0
self.loss = None
self.acc = None
def init_like_chainer(self):
"""Initialize weight like chainer.
chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0
pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5)
however, there are two exceptions as far as I know.
- EmbedID.W ~ Normal(0, 1)
- LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)
"""
lecun_normal_init_parameters(self)
# exceptions
# embed weight ~ Normal(0, 1)
self.dec.embed.weight.data.normal_(0, 1)
# forget-bias = 1.0
# https://discuss.pytorch.org/t/set-forget-gate-bias-of-lstm/1745
for i in six.moves.range(len(self.dec.decoder)):
set_forget_bias_to_one(self.dec.decoder[i].bias_ih)
def forward(self, xs_pad, ilens, ys_pad):
"""E2E forward.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: loss value
:rtype: torch.Tensor
"""
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
hs_pad, hlens = self.feature_transform(hs_pad, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hs_pad, hlens, _ = self.enc(hs_pad, hlens)
# 2. CTC loss
if self.mtlalpha == 0:
self.loss_ctc = None
else:
self.loss_ctc = self.ctc(hs_pad, hlens, ys_pad)
# 3. attention loss
if self.mtlalpha == 1:
self.loss_att, acc = None, None
else:
self.loss_att, acc, _ = self.dec(hs_pad, hlens, ys_pad)
self.acc = acc
# 4. compute cer without beam search
if self.mtlalpha == 0 or self.char_list is None:
cer_ctc = None
else:
cers = []
y_hats = self.ctc.argmax(hs_pad).data
for i, y in enumerate(y_hats):
y_hat = [x[0] for x in groupby(y)]
y_true = ys_pad[i]
seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
seq_hat_text = seq_hat_text.replace(self.blank, "")
seq_true_text = "".join(seq_true).replace(self.space, " ")
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
if len(ref_chars) > 0:
cers.append(
editdistance.eval(hyp_chars, ref_chars) / len(ref_chars)
)
cer_ctc = sum(cers) / len(cers) if cers else None
# 5. compute cer/wer
if self.training or not (self.report_cer or self.report_wer):
cer, wer = 0.0, 0.0
# oracle_cer, oracle_wer = 0.0, 0.0
else:
if self.recog_args.ctc_weight > 0.0:
lpz = self.ctc.log_softmax(hs_pad).data
else:
lpz = None
word_eds, word_ref_lens, char_eds, char_ref_lens = [], [], [], []
nbest_hyps = self.dec.recognize_beam_batch(
hs_pad,
torch.tensor(hlens),
lpz,
self.recog_args,
self.char_list,
self.rnnlm,
)
# remove <sos> and <eos>
y_hats = [nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps]
for i, y_hat in enumerate(y_hats):
y_true = ys_pad[i]
seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.recog_args.space, " ")
seq_hat_text = seq_hat_text.replace(self.recog_args.blank, "")
seq_true_text = "".join(seq_true).replace(self.recog_args.space, " ")
hyp_words = seq_hat_text.split()
ref_words = seq_true_text.split()
word_eds.append(editdistance.eval(hyp_words, ref_words))
word_ref_lens.append(len(ref_words))
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
char_eds.append(editdistance.eval(hyp_chars, ref_chars))
char_ref_lens.append(len(ref_chars))
wer = (
0.0
if not self.report_wer
else float(sum(word_eds)) / sum(word_ref_lens)
)
cer = (
0.0
if not self.report_cer
else float(sum(char_eds)) / sum(char_ref_lens)
)
alpha = self.mtlalpha
if alpha == 0:
self.loss = self.loss_att
loss_att_data = float(self.loss_att)
loss_ctc_data = None
elif alpha == 1:
self.loss = self.loss_ctc
loss_att_data = None
loss_ctc_data = float(self.loss_ctc)
else:
self.loss = alpha * self.loss_ctc + (1 - alpha) * self.loss_att
loss_att_data = float(self.loss_att)
loss_ctc_data = float(self.loss_ctc)
loss_data = float(self.loss)
if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data):
self.reporter.report(
loss_ctc_data, loss_att_data, acc, cer_ctc, cer, wer, loss_data
)
else:
logging.warning("loss (=%f) is not correct", loss_data)
return self.loss
def scorers(self):
"""Scorers."""
return dict(decoder=self.dec, ctc=CTCPrefixScorer(self.ctc, self.eos))
def encode(self, x):
"""Encode acoustic features.
:param ndarray x: input acoustic feature (T, D)
:return: encoder outputs
:rtype: torch.Tensor
"""
self.eval()
ilens = [x.shape[0]]
# subsample frame
x = x[:: self.subsample[0], :]
p = next(self.parameters())
h = torch.as_tensor(x, device=p.device, dtype=p.dtype)
# make a utt list (1) to use the same interface for encoder
hs = h.contiguous().unsqueeze(0)
# 0. Frontend
if self.frontend is not None:
enhanced, hlens, mask = self.frontend(hs, ilens)
hs, hlens = self.feature_transform(enhanced, hlens)
else:
hs, hlens = hs, ilens
# 1. encoder
hs, _, _ = self.enc(hs, hlens)
return hs.squeeze(0)
def recognize(self, x, recog_args, char_list, rnnlm=None):
"""E2E beam search.
:param ndarray x: input acoustic feature (T, D)
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
hs = self.encode(x).unsqueeze(0)
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
lpz = self.ctc.log_softmax(hs)[0]
else:
lpz = None
# 2. Decoder
# decode the first utterance
y = self.dec.recognize_beam(hs[0], lpz, recog_args, char_list, rnnlm)
return y
def recognize_batch(self, xs, recog_args, char_list, rnnlm=None):
"""E2E batch beam search.
:param list xs: list of input acoustic feature arrays [(T_1, D), (T_2, D), ...]
:param Namespace recog_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
prev = self.training
self.eval()
ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)
# subsample frame
xs = [xx[:: self.subsample[0], :] for xx in xs]
xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
xs_pad = pad_list(xs, 0.0)
# 0. Frontend
if self.frontend is not None:
enhanced, hlens, mask = self.frontend(xs_pad, ilens)
hs_pad, hlens = self.feature_transform(enhanced, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hs_pad, hlens, _ = self.enc(hs_pad, hlens)
# calculate log P(z_t|X) for CTC scores
if recog_args.ctc_weight > 0.0:
lpz = self.ctc.log_softmax(hs_pad)
normalize_score = False
else:
lpz = None
normalize_score = True
# 2. Decoder
hlens = torch.tensor(list(map(int, hlens))) # make sure hlens is tensor
y = self.dec.recognize_beam_batch(
hs_pad,
hlens,
lpz,
recog_args,
char_list,
rnnlm,
normalize_score=normalize_score,
)
if prev:
self.train()
return y
def enhance(self, xs):
"""Forward only in the frontend stage.
:param ndarray xs: input acoustic feature (T, C, F)
:return: enhaned feature
:rtype: torch.Tensor
"""
if self.frontend is None:
raise RuntimeError("Frontend does't exist")
prev = self.training
self.eval()
ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)
# subsample frame
xs = [xx[:: self.subsample[0], :] for xx in xs]
xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
xs_pad = pad_list(xs, 0.0)
enhanced, hlensm, mask = self.frontend(xs_pad, ilens)
if prev:
self.train()
return enhanced.cpu().numpy(), mask.cpu().numpy(), ilens
def calculate_all_attentions(self, xs_pad, ilens, ys_pad):
"""E2E attention calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: attention weights with the following shape,
1) multi-head case => attention weights (B, H, Lmax, Tmax),
2) other case => attention weights (B, Lmax, Tmax).
:rtype: float ndarray
"""
self.eval()
with torch.no_grad():
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
hs_pad, hlens = self.feature_transform(hs_pad, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hpad, hlens, _ = self.enc(hs_pad, hlens)
# 2. Decoder
att_ws = self.dec.calculate_all_attentions(hpad, hlens, ys_pad)
self.train()
return att_ws
def calculate_all_ctc_probs(self, xs_pad, ilens, ys_pad):
"""E2E CTC probability calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: CTC probability (B, Tmax, vocab)
:rtype: float ndarray
"""
probs = None
if self.mtlalpha == 0:
return probs
self.eval()
with torch.no_grad():
# 0. Frontend
if self.frontend is not None:
hs_pad, hlens, mask = self.frontend(to_torch_tensor(xs_pad), ilens)
hs_pad, hlens = self.feature_transform(hs_pad, hlens)
else:
hs_pad, hlens = xs_pad, ilens
# 1. Encoder
hpad, hlens, _ = self.enc(hs_pad, hlens)
# 2. CTC probs
probs = self.ctc.softmax(hpad).cpu().numpy()
self.train()
return probs
def subsample_frames(self, x):
"""Subsample speeh frames in the encoder."""
# subsample frame
x = x[:: self.subsample[0], :]
ilen = [x.shape[0]]
h = to_device(self, torch.from_numpy(np.array(x, dtype=np.float32)))
h.contiguous()
return h, ilen