Spaces:
Runtime error
Runtime error
File size: 5,015 Bytes
0d215ca e532db6 0a53800 0d215ca c694998 40403b0 b2d556d f203ba6 5fcdcad 7e6795e 2ab9fff 7e6795e b2d556d 7e6795e 3442116 7e6795e 0d215ca 7e6795e 40403b0 7e6795e f79758c 9cecd9c f203ba6 0a53800 f203ba6 0a53800 7e6795e 5fcdcad 7e6795e 0a53800 5fcdcad 7e6795e 5fcdcad 7e6795e 0d215ca 5fcdcad 7e6795e 5fcdcad 0d215ca 7e6795e 0d215ca 5fcdcad 7e6795e 5fcdcad 5e48162 5fcdcad 0d215ca 7e6795e 0d215ca a531b86 7e6795e 5fcdcad 7e6795e 0a53800 a531b86 7e6795e 5fcdcad 7e6795e 5fcdcad 7e6795e b2d556d 7e6795e 5fcdcad 7e6795e 5fcdcad 7e6795e 5fcdcad 7e6795e c694998 7e6795e c694998 7e6795e df71374 7e6795e 40403b0 7e6795e 5e48162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import streamlit as st
import requests
import time
from ast import literal_eval
from datetime import datetime
def to_md(text):
# return text.replace("\n", "<br />")
return text.replace("\n", "<br />")
@st.cache
def infer(
prompt,
model_name,
max_new_tokens=10,
temperature=0.1,
top_p=1.0,
top_k=40,
num_completions=1,
seed=42,
stop="\n"
):
model_name_map = {
"GPT-JT-6B-v1": "Together-gpt-JT-6B-v1",
}
max_new_tokens = int(max_new_tokens)
num_completions = int(num_completions)
temperature = float(temperature)
top_p = float(top_p)
stop = stop.split(";")
seed = seed
assert 0 <= max_new_tokens <= 256
assert 1 <= num_completions <= 5
assert 0.0 <= temperature <= 10.0
assert 0.0 <= top_p <= 1.0
if temperature == 0.0:
temperature = 0.01
my_post_dict = {
"model": "Together-gpt-JT-6B-v1",
"prompt": prompt,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"max_tokens": max_new_tokens,
"stop": stop,
}
print(f"send: {datetime.now()}")
response = requests.get("https://staging.together.xyz/api/inference", params=my_post_dict).json()
generated_text = response['output']['choices'][0]['text']
print(f"recv: {datetime.now()}")
for stop_word in stop:
if stop_word in generated_text:
generated_text = generated_text[:generated_text.find(stop_word)]
st.session_state.updated = True
return generated_text
def set_preset():
if st.session_state.preset == "Classification":
if not st.session_state.updated:
st.session_state.prompt = '''Please classify the given sentence.
Possible labels:
1. <label_0>
2. <label_1>
Input: <sentence_0>
Label: <label_0>
Input: <sentence_1>
Label:'''
st.session_state.temperature = "0.0"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "10"
elif st.session_state.preset == "Generation":
if not st.session_state.updated:
st.session_state.prompt = '''Please write a story given keywords.
Input: bear, honey
Story: Once upon a time,'''
st.session_state.temperature = "0.0"
st.session_state.top_p = "0.9"
st.session_state.max_new_tokens = "100"
else:
pass
def main():
if 'preset' not in st.session_state:
st.session_state.preset = "Classification"
if 'prompt' not in st.session_state:
st.session_state.prompt = "Please answer the following question:\n\nQuestion: In which country is Zurich located?\nAnswer:"
if 'temperature' not in st.session_state:
st.session_state.temperature = "0.8"
if 'top_p' not in st.session_state:
st.session_state.top_p = "1.0"
if 'top_k' not in st.session_state:
st.session_state.top_k = "40"
if 'max_new_tokens' not in st.session_state:
st.session_state.max_new_tokens = "10"
if 'updated' not in st.session_state:
st.session_state.updated = False
st.title("GPT-JT")
col1, col2 = st.columns([1, 3])
with col1:
model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
max_new_tokens = st.text_input('Max new tokens', st.session_state.max_new_tokens)
temperature = st.text_input('temperature', st.session_state.temperature)
top_k = st.text_input('top_k', st.session_state.top_k)
top_p = st.text_input('top_p', st.session_state.top_p)
# num_completions = st.text_input('num_completions (only the best one will be returend)', "1")
num_completions = "1"
stop = st.text_input('stop, split by;', r'\n')
# seed = st.text_input('seed', "42")
seed = "42"
with col2:
# preset = st.radio(
# "Recommended Templates",
# ('Classification', 'Generation'),
# on_change=set_preset,
# key="preset",
# horizontal=True
# )
prompt_area = st.empty()
prompt = prompt_area.text_area(
"Prompt",
value=st.session_state.prompt,
max_chars=4096,
height=300,
)
generated_area = st.empty()
generated_area.markdown("(Generate here)")
button_submit = st.button("Submit")
if button_submit:
generated_area.markdown("<b>" + to_md(prompt) + "</b>", unsafe_allow_html=True)
report_text = infer(
prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k,
num_completions=num_completions, seed=seed, stop=literal_eval("'''"+stop+"'''"),
)
generated_area.markdown("<b>" + to_md(prompt) + "</b><mark style='background-color: #cbeacd'>" + to_md(report_text)+"</mark>", unsafe_allow_html=True)
if __name__ == '__main__':
main() |