OpenOCR-Demo / tools /infer /utility.py
topdu's picture
openocr demo
29f689c
raw
history blame
8.3 kB
import argparse
import math
import cv2
import numpy as np
import torch
import PIL
from PIL import Image, ImageDraw, ImageFont
import random
def str2bool(v):
return v.lower() in ('true', 'yes', 't', 'y', '1')
def str2int_tuple(v):
return tuple([int(i.strip()) for i in v.split(',')])
def init_args():
parser = argparse.ArgumentParser()
# params for prediction engine
parser.add_argument('--use_gpu', type=str2bool, default=False)
# params for text detector
parser.add_argument('--image_dir', type=str)
parser.add_argument('--det_algorithm', type=str, default='DB')
parser.add_argument('--det_model_dir', type=str)
parser.add_argument('--det_limit_side_len', type=float, default=960)
parser.add_argument('--det_limit_type', type=str, default='max')
parser.add_argument('--det_box_type', type=str, default='quad')
# DB parmas
parser.add_argument('--det_db_thresh', type=float, default=0.3)
parser.add_argument('--det_db_box_thresh', type=float, default=0.6)
parser.add_argument('--det_db_unclip_ratio', type=float, default=1.5)
parser.add_argument('--max_batch_size', type=int, default=10)
parser.add_argument('--use_dilation', type=str2bool, default=False)
parser.add_argument('--det_db_score_mode', type=str, default='fast')
# params for text recognizer
parser.add_argument('--rec_algorithm', type=str, default='SVTR_LCNet')
parser.add_argument('--rec_model_dir', type=str)
parser.add_argument('--rec_image_inverse', type=str2bool, default=True)
parser.add_argument('--rec_image_shape', type=str, default='3, 48, 320')
parser.add_argument('--rec_batch_num', type=int, default=6)
parser.add_argument('--max_text_length', type=int, default=25)
parser.add_argument('--vis_font_path',
type=str,
default='./doc/fonts/simfang.ttf')
parser.add_argument('--drop_score', type=float, default=0.5)
# params for text classifier
parser.add_argument('--use_angle_cls', type=str2bool, default=False)
parser.add_argument('--cls_model_dir', type=str)
parser.add_argument('--cls_image_shape', type=str, default='3, 48, 192')
parser.add_argument('--label_list', type=list, default=['0', '180'])
parser.add_argument('--cls_batch_num', type=int, default=6)
parser.add_argument('--cls_thresh', type=float, default=0.9)
parser.add_argument('--warmup', type=str2bool, default=False)
#
parser.add_argument('--output', type=str, default='./inference_results')
parser.add_argument('--save_crop_res', type=str2bool, default=False)
parser.add_argument('--crop_res_save_dir', type=str, default='./output')
# multi-process
parser.add_argument('--use_mp', type=str2bool, default=False)
parser.add_argument('--total_process_num', type=int, default=1)
parser.add_argument('--process_id', type=int, default=0)
parser.add_argument('--show_log', type=str2bool, default=True)
return parser
def parse_args():
parser = init_args()
return parser.parse_args()
def create_font(txt, sz, font_path="./doc/fonts/simfang.ttf"):
font_size = int(sz[1] * 0.99)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
if int(PIL.__version__.split(".")[0]) < 10:
length = font.getsize(txt)[0]
else:
length = font.getlength(txt)
if length > sz[0]:
font_size = int(font_size * sz[0] / length)
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
return font
def draw_box_txt_fine(img_size, box, txt, font_path="./doc/fonts/simfang.ttf"):
box_height = int(
math.sqrt((box[0][0] - box[3][0]) ** 2 + (box[0][1] - box[3][1]) ** 2)
)
box_width = int(
math.sqrt((box[0][0] - box[1][0]) ** 2 + (box[0][1] - box[1][1]) ** 2)
)
if box_height > 2 * box_width and box_height > 30:
img_text = Image.new("RGB", (box_height, box_width), (255, 255, 255))
draw_text = ImageDraw.Draw(img_text)
if txt:
font = create_font(txt, (box_height, box_width), font_path)
draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
img_text = img_text.transpose(Image.ROTATE_270)
else:
img_text = Image.new("RGB", (box_width, box_height), (255, 255, 255))
draw_text = ImageDraw.Draw(img_text)
if txt:
font = create_font(txt, (box_width, box_height), font_path)
draw_text.text([0, 0], txt, fill=(0, 0, 0), font=font)
pts1 = np.float32(
[[0, 0], [box_width, 0], [box_width, box_height], [0, box_height]]
)
pts2 = np.array(box, dtype=np.float32)
M = cv2.getPerspectiveTransform(pts1, pts2)
img_text = np.array(img_text, dtype=np.uint8)
img_right_text = cv2.warpPerspective(
img_text,
M,
img_size,
flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(255, 255, 255),
)
return img_right_text
def draw_ocr_box_txt(
image,
boxes,
txts=None,
scores=None,
drop_score=0.5,
font_path="./doc/fonts/simfang.ttf",
):
h, w = image.height, image.width
img_left = image.copy()
img_right = np.ones((h, w, 3), dtype=np.uint8) * 255
random.seed(0)
draw_left = ImageDraw.Draw(img_left)
if txts is None or len(txts) != len(boxes):
txts = [None] * len(boxes)
for idx, (box, txt) in enumerate(zip(boxes, txts)):
if scores is not None and scores[idx] < drop_score:
continue
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
if isinstance(box[0], list):
box = list(map(tuple, box))
draw_left.polygon(box, fill=color)
img_right_text = draw_box_txt_fine((w, h), box, txt, font_path)
pts = np.array(box, np.int32).reshape((-1, 1, 2))
cv2.polylines(img_right_text, [pts], True, color, 1)
img_right = cv2.bitwise_and(img_right, img_right_text)
img_left = Image.blend(image, img_left, 0.5)
img_show = Image.new("RGB", (w * 2, h), (255, 255, 255))
img_show.paste(img_left, (0, 0, w, h))
img_show.paste(Image.fromarray(img_right), (w, 0, w * 2, h))
return np.array(img_show)
def get_rotate_crop_image(img, points):
"""
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
"""
assert len(points) == 4, 'shape of points must be 4*2'
img_crop_width = int(
max(np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([
[0, 0],
[img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height],
])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M,
(img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC,
)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
def get_minarea_rect_crop(img, points):
bounding_box = cv2.minAreaRect(np.array(points).astype(np.int32))
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_a, index_b, index_c, index_d = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_a = 0
index_d = 1
else:
index_a = 1
index_d = 0
if points[3][1] > points[2][1]:
index_b = 2
index_c = 3
else:
index_b = 3
index_c = 2
box = [points[index_a], points[index_b], points[index_c], points[index_d]]
crop_img = get_rotate_crop_image(img, np.array(box))
return crop_img
def check_gpu(use_gpu):
if use_gpu and not torch.cuda.is_available():
use_gpu = False
return use_gpu
if __name__ == '__main__':
pass