Spaces:
Runtime error
Runtime error
File size: 95,534 Bytes
b8429e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"___\n",
"\n",
"<a href='https://github.com/eliasmelul/'> <img src='https://s3.us-east-2.amazonaws.com/wordontheamazon.com/NoMargin_NewLogo.png' style='width: 15em;' align='right' /></a>\n",
"# Finance with Python\n",
"### Monte Carlo Simulations for Stock Price Predictions\n",
"___\n",
"<h4 align=\"right\">by Elias Melul, Data Scientist </h4> \n",
"\n",
"___\n",
"\n",
"\n",
"\n",
"In this notebook, we introduce how to use Monte Carlo simulations for forecasting future stock prices.\n",
"\n",
"$$\n",
"{Price Today}={Price Yesterday * e^r}\n",
"$$\n",
"\n",
"* We know yesterday's price. \n",
"\n",
"* We want to predict today's price. \n",
"\n",
"* What we do not know is the rate of return, r, of the share price between yesterday and today. \n",
"\n",
"This is where the Monte Carlo simulation comes in! But first, how do we compute the return?\n",
"\n",
"### Brownian Motion\n",
"\n",
"Brownian motion will be the main driver for estimating the return. It is a stochastic process used for modeling random behavior over time. For simplicity, we will use regular brownian motion, instead of the Geometric Brownian Motion, which is more common and less questionable in stock pricing applications.\n",
"\n",
"**Brownian Motion** has two main main components:\n",
"1. Drift - the direction that rates of returns have had in the past. That is, the expected return of the stock.\n",
"$$\n",
"{Drift} = ({mean} - \\frac{1}{2} {Var})\n",
"$$\n",
"\n",
" Why do we multiply the variance by 0.5? Because historical values are eroded in the future.\n",
" \n",
"\n",
"2. Volatility - random variable. This is the historical volatility multiplied by a random, standard normally distributed variable.\n",
"\n",
"$$\n",
"{Volatility} = {Std.Dev. * Z([Rand(0;1)])}\n",
"$$\n",
"\n",
"Therefore, our asset pricing equation ends up looking like this:\n",
"\n",
"$$\n",
"{Price Today}={Price Yesterday * e^{mean-\\frac{1}{2}{Var} + Std.Dev * Z([Rand(0;1)])}}\n",
"$$\n",
"\n",
"\n",
"\n",
"This technique will be used for every day into the future you want to predict, and for however many trials the monte carlo simulation will run!\n",
"\n",
"---\n",
"\n",
"First, import required libraries."
]
},
{
"cell_type": "code",
"execution_count": 134,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"#from pandas_datareader import data as wb\n",
"import matplotlib.pyplot as plt\n",
"from scipy.stats import norm, gmean, cauchy\n",
"import seaborn as sns\n",
"from datetime import datetime\n",
"import os\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {},
"outputs": [],
"source": [
"# set Variables\n",
"os.environ['API_KEY'] = 'XXXXXX'\n",
"tickers = ['AMP'] # Example tickers\n",
"days=180\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Import data for one or multiple stocks from a specified date until the last available data. Data source: yahoo finance.\n",
"\n",
"For this, it's better if we define a function that imports stock(s) daily data for any publicly traded company as defined by the user starting at a user-defined date until today. We will use the Adjusted Close price."
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {},
"outputs": [],
"source": [
"from alpha_vantage.timeseries import TimeSeries\n",
"import pandas as pd\n",
"from datetime import datetime\n",
"\n",
"# Function to import stock data using Alpha Vantage\n",
"def import_stock_data_alphavantage(tickers, api_key, start='2024-1-01', end=datetime.today().strftime('%Y-%m-%d')):\n",
" data = pd.DataFrame()\n",
" ts = TimeSeries(key=api_key, output_format='pandas') # Initialize TimeSeries with your API key\n",
" if isinstance(tickers, str):\n",
" tickers = [tickers] # Convert to list if only one ticker is provided\n",
" for ticker in tickers:\n",
" # Get the stock data\n",
" df, meta_data = ts.get_daily_adjusted(ticker, outputsize='full')\n",
" # Selecting only the '5. adjusted close' column and renaming it to the ticker\n",
" df = df['5. adjusted close'].rename(ticker).to_frame()\n",
" # Filter the data based on the start and end dates\n",
" df = df[(df.index >= start) & (df.index <= end)]\n",
" # If data is empty, initialize it with the current df\n",
" if data.empty:\n",
" data = df\n",
" else:\n",
" # If not empty, join the new df with the existing data\n",
" data = data.join(df, how='outer')\n",
" return data\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 137,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" AMP\n",
"date \n",
"2024-02-02 390.69\n",
"2024-02-01 386.02\n",
"2024-01-31 386.83\n",
"2024-01-30 393.55\n",
"2024-01-29 393.11\n"
]
}
],
"source": [
"# Example usage\n",
"api_key = os.environ.get('API_KEY')\n",
"data = import_stock_data_alphavantage(tickers, api_key)\n",
"print(data.head())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we compute the logarithmic returns of the data."
]
},
{
"cell_type": "code",
"execution_count": 138,
"metadata": {},
"outputs": [],
"source": [
"def log_returns(data):\n",
" return (np.log(1+data.pct_change()))"
]
},
{
"cell_type": "code",
"execution_count": 139,
"metadata": {},
"outputs": [],
"source": [
"log_return = log_returns(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also create a function to compute the simple returns."
]
},
{
"cell_type": "code",
"execution_count": 140,
"metadata": {},
"outputs": [],
"source": [
"def simple_returns(data):\n",
" return ((data/data.shift(1))-1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## CAPM and Sharpe\n",
"\n",
"Before we jump into Monte Carlo Simulations, we would like to report some statistics with it, including the Beta and Sharpe Ratio of the stock, compared to the _market portfolio_. To understand these metrics, we first must understand the underlying concepts of the _Capital Asset Pricing Model,_ starting with the _market portfolio_.\n",
"\n",
"* The market portfolio is the theoretical combination of all possible investments in the world. However, there is no such thing as a market portfolio. We approximate it with a stock market index. In our case, we use the S&P500, but you can specify any index you want to!\n",
"\n",
"* We also note that there is no such thing as a risk-free asset. We will use a 10-year US government bond yield of 2.5% instead.\n",
"\n",
"* The equity premium is the difference between the expected return of the market and the risk-free asset. This value is typically between 4.5 and 5.5%. We can use 5%.\n",
"\n",
"We use the _market portfolio_ to compute the Beta, the CAPM expected return, and the Sharpe Ratio of a stock.\n",
"1. **Beta**: measures the market risk that cannot be avoided through diversification. This is the relationship between the stock and the market portfolio. In other words, it is a measure of how much risk the investment will add to a portfolio that looks like the market.\n",
"##### $$ \n",
"\\beta_{i} = \\frac{\\sigma_{i,m}}{\\sigma_{m}^2}\n",
"$$\n",
"\n",
" When beta = 0, it means that there's no relationship.\n",
" \n",
" When beta < 1, it means that the stock is defensive (less prone to high highs and low lows)\n",
" \n",
" When beta > 1, it means that the stock is aggresive (more prone to high highs and low lows)\n",
" \n",
" \n",
"2. **Expected Return CAPM**: calculates the expected return of a security adjusted to the risk taken. This equates to the return expected from taking the extra risk of purchasing this security.\n",
"##### $$\n",
"\\overline{r_{i}} = r_f + \\beta_{i}(\\overline{r_{m}} - r_f) \n",
"$$\n",
"\n",
"3. **Sharpe Ratio**: measures the performance of a security compared to a risk-free asset, after adjusting for its risk. This is the excess return per unit of risk of an investment.\n",
"##### $$\n",
"Sharpe = \\frac{\\overline{r_{i}} - r_f}{\\sigma_{i}}\n",
"$$\n",
" When Sharpe > 1, GOOD risk-adjusted returns\n",
" \n",
" When Sharpe > 2, VERY GOOD risk-adjusted returns\n",
" \n",
" When Sharpe > 3, EXCELLENT risk-adjusted returns\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 141,
"metadata": {},
"outputs": [],
"source": [
"def market_data_combination(data, mark_ticker = \"SPY\", start='2022-1-1'):\n",
" api_key = os.environ.get('API_KEY')\n",
" market_data = import_stock_data_alphavantage(mark_ticker, api_key)\n",
" market_rets = log_returns(market_data).dropna()\n",
" ann_return = np.exp(market_rets.mean()*252).values-1\n",
" data = data.merge(market_data, left_index=True, right_index=True)\n",
" # Add debugging statements here\n",
" print(\"Market data shape:\", market_data.shape)\n",
" print(\"Number of non-NaN entries in market data:\", sum(~market_data.isna().values.flatten()))\n",
" print(\"First few rows of market data:\\n\", market_data.head())\n",
" return data, ann_return"
]
},
{
"cell_type": "code",
"execution_count": 142,
"metadata": {},
"outputs": [],
"source": [
"def beta_sharpe(data, mark_ticker = \"SPY\", start='2010-1-1', riskfree = 0.025):\n",
" \n",
" \"\"\"\n",
" Input: \n",
" 1. data: dataframe of stock price data\n",
" 2. mark_ticker: ticker of the market data you want to compute CAPM metrics with (default is ^GSPC)\n",
" 3. start: data from which to download data (default Jan 1st 2010)\n",
" 4. riskfree: the assumed risk free yield (US 10 Year Bond is assumed: 2.5%)\n",
" \n",
" Output:\n",
" 1. Dataframe with CAPM metrics computed against specified market procy\n",
" \"\"\"\n",
" # Beta\n",
" dd, mark_ret = market_data_combination(data, mark_ticker, start)\n",
" print(\"printing dd\")\n",
" print(dd.head())\n",
" print(\"printing mark_ret\")\n",
" print(mark_ret)\n",
" log_ret = log_returns(dd)\n",
" covar = log_ret.cov()*252\n",
" covar = pd.DataFrame(covar.iloc[:-1,-1])\n",
" mrk_var = log_ret.iloc[:,-1].var()*252\n",
" beta = covar/mrk_var\n",
" \n",
" stdev_ret = pd.DataFrame(((log_ret.std()*250**0.5)[:-1]), columns=['STD'])\n",
" beta = beta.merge(stdev_ret, left_index=True, right_index=True)\n",
" \n",
" # CAPM\n",
" for i, row in beta.iterrows():\n",
" beta.at[i,'CAPM'] = riskfree + (row[mark_ticker] * (mark_ret-riskfree))\n",
" # Sharpe\n",
" for i, row in beta.iterrows():\n",
" beta.at[i,'Sharpe'] = ((row['CAPM']-riskfree)/(row['STD']))\n",
" beta.rename(columns={\"SPY\":\"Beta\"}, inplace=True)\n",
" \n",
" return beta"
]
},
{
"cell_type": "code",
"execution_count": 143,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" AMP\n",
"date \n",
"2024-02-02 390.69\n",
"2024-02-01 386.02\n",
"2024-01-31 386.83\n",
"2024-01-30 393.55\n",
"2024-01-29 393.11\n",
"2024-01-26 391.40\n",
"2024-01-25 391.38\n",
"2024-01-24 389.46\n",
"2024-01-23 387.80\n",
"2024-01-22 387.11\n",
"2024-01-19 381.67\n",
"2024-01-18 374.88\n",
"2024-01-17 372.06\n",
"2024-01-16 373.47\n",
"2024-01-12 376.40\n",
"2024-01-11 378.27\n",
"2024-01-10 377.99\n",
"2024-01-09 375.91\n",
"2024-01-08 384.44\n",
"2024-01-05 382.10\n",
"2024-01-04 379.04\n",
"2024-01-03 380.54\n",
"2024-01-02 379.03\n",
"Market data shape: (23, 1)\n",
"Number of non-NaN entries in market data: 23\n",
"First few rows of market data:\n",
" SPY\n",
"date \n",
"2024-02-02 494.35\n",
"2024-02-01 489.20\n",
"2024-01-31 482.88\n",
"2024-01-30 490.89\n",
"2024-01-29 491.27\n",
"printing dd\n",
" AMP SPY\n",
"date \n",
"2024-02-02 390.69 494.35\n",
"2024-02-01 386.02 489.20\n",
"2024-01-31 386.83 482.88\n",
"2024-01-30 393.55 490.89\n",
"2024-01-29 393.11 491.27\n",
"printing mark_ret\n",
"[-0.40200844]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Beta</th>\n",
" <th>STD</th>\n",
" <th>CAPM</th>\n",
" <th>Sharpe</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>AMP</th>\n",
" <td>0.776008</td>\n",
" <td>0.147075</td>\n",
" <td>-0.306362</td>\n",
" <td>-2.253011</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Beta STD CAPM Sharpe\n",
"AMP 0.776008 0.147075 -0.306362 -2.253011"
]
},
"execution_count": 143,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(data)\n",
"beta_sharpe(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Brownian Motion**\n",
"\n",
"Now that we have our returns, we can compute the brownian motion, as explained in the introduction.\n",
"1. Calculate the drift\n",
"2. Calculate the variance\n",
"3. Calculate the daily returns based on the drift and variance"
]
},
{
"cell_type": "code",
"execution_count": 144,
"metadata": {},
"outputs": [],
"source": [
"def drift_calc(data, return_type='log'):\n",
" try:\n",
" if return_type == 'log':\n",
" lr = log_returns(data)\n",
" elif return_type == 'simple':\n",
" lr = simple_returns(data)\n",
" u = lr.mean()\n",
" var = lr.var()\n",
" drift = u - (0.5 * var)\n",
" return drift.values\n",
" except Exception as e:\n",
" print(f\"Error in drift_calc: {str(e)}\")\n",
" print(\"Please check the input data and return type\")\n",
" return None\n"
]
},
{
"cell_type": "code",
"execution_count": 145,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.00142049]\n"
]
}
],
"source": [
"drift_calc(data)\n",
"print(drift_calc(data))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We calculated the drift above, but now, we must calculate the daily returns for the data. There are things to consider:\n",
"1. How many days into the future will we predict? (How many rows)\n",
"2. How many iterations of these predictions will we compute? (How many columns)\n",
"\n",
"This generates the daily returns (not prices!) for each day into the future for each iteration (simulation) based on a normal distribution."
]
},
{
"cell_type": "code",
"execution_count": 146,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from scipy.stats import norm # Add this import statement\n",
"# Other necessary imports...\n",
"\n",
"def daily_returns(data, days, iterations, return_type='log'):\n",
" ft = drift_calc(data, return_type)\n",
" if return_type == 'log':\n",
" try:\n",
" stv = log_returns(data).std().values\n",
" except:\n",
" stv = log_returns(data).std()\n",
" elif return_type == 'simple':\n",
" try:\n",
" stv = simple_returns(data).std().values\n",
" except:\n",
" stv = simple_returns(data).std()\n",
" \n",
" # Oftentimes, we find that the distribution of returns is a variation of the normal distribution where it has a fat tail\n",
" # This distribution is called cauchy distribution\n",
" dr = np.exp(ft + stv * norm.ppf(np.random.rand(days, iterations)))\n",
" return dr\n"
]
},
{
"cell_type": "code",
"execution_count": 147,
"metadata": {},
"outputs": [],
"source": [
"dr = daily_returns(data, 2, 3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: This next function is used to calculate the probability of a stock having a higher price or higher returns than specified over the period defined. "
]
},
{
"cell_type": "code",
"execution_count": 148,
"metadata": {},
"outputs": [],
"source": [
"def probs_find(predicted, higherthan, on = 'value'):\n",
" \"\"\"\n",
" This function calculated the probability of a stock being above a certain threshhold, which can be defined as a value (final stock price) or return rate (percentage change)\n",
" Input: \n",
" 1. predicted: dataframe with all the predicted prices (days and simulations)\n",
" 2. higherthan: specified threshhold to which compute the probability (ex. 0 on return will compute the probability of at least breakeven)\n",
" 3. on: 'return' or 'value', the return of the stock or the final value of stock for every simulation over the time specified\n",
" \"\"\"\n",
" if on == 'return':\n",
" predicted0 = predicted.iloc[0,0]\n",
" predicted = predicted.iloc[-1]\n",
" predList = list(predicted)\n",
" over = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 >= higherthan]\n",
" less = [(i*100)/predicted0 for i in predList if ((i-predicted0)*100)/predicted0 < higherthan]\n",
" elif on == 'value':\n",
" predicted = predicted.iloc[-1]\n",
" predList = list(predicted)\n",
" over = [i for i in predList if i >= higherthan]\n",
" less = [i for i in predList if i < higherthan]\n",
" else:\n",
" print(\"'on' must be either value or return\")\n",
" return (len(over)/(len(over)+len(less)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Example: We would like to find out the probability that our investment in PG will breakeven or make a profit over the course of a year (financial year is about 252 days). There are two ways we can do this:\n",
"1. Returns = 0\n",
"2. Final stock price = initial stock price ($44.05 - Jan 1st 2010, the first data point)\n",
"\n",
"So, with the simulation predicted values, we will predict said probabilities.\n",
"\n",
"---\n",
"\n",
"First, however, we must run the simulation! How does it work?\n",
"\n",
"1. Calculate the daily returns for every day and every iteration (simulation) of the data. \n",
"2. Creates an equally large matrix of size [days x iteration] full of zeroes.\n",
"3. Input the last stock price value in the first row (day 0) of the \"empty\" matrix (part 2). This is our starting point.\n",
"4. Calculate \"today's price\" based on yesterday's multiplied by the daily return generated. That is, multiply the daily return generated for every simulation with the stock price calculated for the previous day (the previous row) for every simulation.\n",
"\n",
"Does that sounds familiar? The fourth step multiplies the daily returns with the price of the stock of the previous day!"
]
},
{
"cell_type": "code",
"execution_count": 149,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"def simulate_mc(data, days, iterations, return_type='log', plot=True):\n",
" # Generate daily returns\n",
" returns = daily_returns(data, days, iterations, return_type)\n",
" # Create empty matrix\n",
" price_list = np.zeros_like(returns)\n",
" # Put the last actual price in the first row of matrix. \n",
" price_list[0] = data.iloc[-1]\n",
" # Calculate the price of each day\n",
" for t in range(1,days):\n",
" price_list[t] = price_list[t-1]*returns[t]\n",
" \n",
" # Plot Option\n",
" if plot == True:\n",
" x = pd.DataFrame(price_list).iloc[-1]\n",
" fig, ax = plt.subplots(1,2, figsize=(14,4))\n",
" sns.distplot(x, ax=ax[0])\n",
" sns.distplot(x, hist_kws={'cumulative':True},kde_kws={'cumulative':True},ax=ax[1])\n",
" plt.xlabel(\"Stock Price\")\n",
" plt.show()\n",
" \n",
" #CAPM and Sharpe Ratio\n",
" \n",
" # Printing information about stock\n",
" try:\n",
" [print(nam) for nam in data.columns]\n",
" except:\n",
" print(data.name)\n",
" print(f\"Days: {days-1}\")\n",
" print(f\"Expected Value: ${round(pd.DataFrame(price_list).iloc[-1].mean(),2)}\")\n",
" print(f\"Return: {round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(),2)}%\")\n",
" print(f\"Probability of Breakeven: {probs_find(pd.DataFrame(price_list),0, on='return')}\")\n",
" \n",
" \n",
" return pd.DataFrame(price_list)"
]
},
{
"cell_type": "code",
"execution_count": 150,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_5723/256993402.py:18: UserWarning: \n",
"\n",
"`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n",
"\n",
"Please adapt your code to use either `displot` (a figure-level function with\n",
"similar flexibility) or `histplot` (an axes-level function for histograms).\n",
"\n",
"For a guide to updating your code to use the new functions, please see\n",
"https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n",
"\n",
" sns.distplot(x, ax=ax[0])\n",
"/tmp/ipykernel_5723/256993402.py:19: UserWarning: \n",
"\n",
"`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n",
"\n",
"Please adapt your code to use either `displot` (a figure-level function with\n",
"similar flexibility) or `histplot` (an axes-level function for histograms).\n",
"\n",
"For a guide to updating your code to use the new functions, please see\n",
"https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n",
"\n",
" sns.distplot(x, hist_kws={'cumulative':True},kde_kws={'cumulative':True},ax=ax[1])\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAFzCAYAAAB7BBMsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH5klEQVR4nOzde1xUdf4/8NeZO9fhzgByU/CuoKiIWXYh0exil12r3TS3tW+72a/WrTbb0nbru25budbm5tZW1m5m38rc1owy1G4SKuBdUQQEgeHODAwwAzPn98cwoyQo4MAZmNfzsbPAmc8ZXnOc4MN7PhdBFEURRERERERERERELiKTOgAREREREREREQ0vLDgREREREREREZFLseBEREREREREREQuxYITERERERERERG5FAtORERERERERETkUiw4ERERERERERGRS7HgRERERERERERELsWCExERERERERERuZRC6gBDlc1mQ0VFBfz8/CAIgtRxiIiIqAeiKKKpqQmRkZGQyfhem5TYfyIiIhoaXNF/YsGpnyoqKhAdHS11DCIiIuqlsrIyjBgxQuoYHo39JyIioqHlcvpPLDj1k5+fHwD7xff395c4DREREfXEaDQiOjra+bubpMP+ExER0dDgiv4TC0795BgG7u/vzw4TERHREMApXNJj/4mIiGhouZz+ExcyICIiIiIiIiIil2LBiYiIiIiIiIiIXIoFJyIiIiIiIiIicikWnIiIiIiIiIiIyKVYcCIiIiIiIiIiIpdiwYmIiIiIiIiIiFyKBSciIiIiIiIiInIpFpyIiIiIPMw333yDm266CZGRkRAEAVu3br3kObt378bUqVOhVquRkJCAjRs3DnhOIiIiGrpYcCIiIiLyMCaTCUlJSVi/fn2v2hcXF2PBggW45pprcODAATzyyCP45S9/iS+++GKAkxIREdFQpZA6ABERERENrvnz52P+/Pm9br9hwwbEx8fjpZdeAgCMGzcO3333Hf76178iIyNjoGISERHREMaCExERERFdVHZ2NtLT07scy8jIwCOPPHLR88xmM8xms/Nro9E4EPGIiGiIEUURHTYRlg4brKIIq9X+ta3zuP1rm/PrDut599lE2GwibCIgQoQoAjax82ux69e2zq/F87+G42sRNhsgwtHO8Rg//vpHj4WeH7u7DGLn93RktokiAMf9576neLGvL3E9F02LxuzEkAH+V+s7FpyIyKU25ZT2qt3dqTEDnISIiFxFr9cjPDy8y7Hw8HAYjUa0trbCy8ur2/PWrFmDP/zhD4MRkYiIXEwURTSZO2BoaUdTWwdMlg6YzB1osVjRbO5Ai7kDJou16zFLB1otVpg7bJ03K8zt533eYev82grbpaoo1GszRwZhNlhwIiIiIiIPsXLlSqxYscL5tdFoRHR0tISJiIg8lyiKMLS2o8poRpWxDVXGNlQ3mdFgsqChpR2GVvvHxhYLGlva0djaDusgV4VkAiATBPtNdt7njuMyAQLsn8P+P8gEAYJgP99+WOj8CAiC0PkRgOO4AMhw7vzuznE+1nnn//jxhPMeLyHM77zsne0u9jXOHZc577uwncyZxf51T1JiAwfk3+NyseBERERERBel0+lQVVXV5VhVVRX8/f17HN0EAGq1Gmq1eqDjERERgGZzB8rqW+y3hlacbWhBtaO41NSGysY2dPSjgKSQCdAo5VArZFApZM6PKkXXY2q5DCqlHEqZAKVcBoVcgEJm/6iUCVDIZVA4PsoFKGUyyGVdC0tDFWdvdI8FJyIiIiK6qLS0NGzfvr3LsR07diAtLU2iREREnqnVYkVRbTNO15hwuroZp2uaUVrfgsLqZrRYrL16DC+lHP5eCvhrlPDTKOCjUsBbJYdX50f753J4d36tlHNze+ofFpyIiIiIPExzczMKCwudXxcXF+PAgQMICgpCTEwMVq5cifLycrz77rsAgAceeACvvvoqHn/8cfziF7/Azp078X//93/47LPPpHoKRETDmtUmorjWhNe/KUJlYyv0xjbUNJvR2NJ+0fO8lHIE+agQ6K1EoLcKWm8l/DRK+GvsBSZfjYIFJBo0LDgREREReZj9+/fjmmuucX7tWGdpyZIl2LhxIyorK1Faem4TiPj4eHz22Wf4zW9+g5dffhkjRozAP//5T2RkZAx6diKi4cZmE3G6phn5pY04UmHA0QojjlUY0dre/YglL6UcYX5qhHbegn3UCPSxF5g0SvkgpyfqGQtORERERB7m6quvhij2vI7Hxo0buz0nPz9/AFMREXmGDqsNL3xRgJJaE87Ut+BMXUu3xSWlXIDOX4PIAC9EaL2cBSZfNf+Mp6GBr1QiIiIiIiIiF9mUU3rBsbpmM05VN6Owc90lc4ety/1KuYARgd6ICvBCZIAGkVovhPiph/RC2kQsOBERERERERG5kCiKqDC04WjnFLmaJnOX+72UcsSH+CAu2BuxwT6IDPCC/GL73hMNQSw4EREREREREbnA8Uojth+uxJEKQ5cFvmUCEBvsg4QwXySG+SIywIujl2jYY8GJiIiIiIiI6BK6myoHACZzBw6ebUTemQZUGNqcx5VyAaPD/TAhUouxOj8u6E0ehwUnIiIiIiIioj4qq2/B96drcbTcCGvnRgxyQcDYCD8kRwcgMcwPKoVM4pRE0mHBiYiIiIiIiKgXrDYRRysM2HO6DqX1Lc7jUQFemBoTgKQRAfDmLnJEAFhwIiIiIiIiIrqodqsN+0rqsaug2rk2k1wmYHKUFrMSQhAV4CVxQiL3w4ITEREREREReaye1mYC7COaDpY1YmdBNepNFgCAj1qB1PggpMYHwU+jHKyYREMOC05ERERERERE5xFFEccrjcg8qkdt87lC09WjQzEjPghKOddmIroUFpyIiIiIiIiIOtU2mfHfQxU4Vd0MAPBWyXFVYihmjgzmIuBEfcCCExEREREREXk8c4cVuwtq8N2pWlhFEXKZgCsTQjBndCjUSrnU8YiGHBaciIiIiIiIyKMVVjfj47yzMLTaFwQfE+6HGydHINhXLXEyoqGLBSciIiIiIiIali62IDgAWDps+OKoHtlFdQCAQG8lbpwcibE6PwiCMBgRiYYtySegrl+/HnFxcdBoNEhNTcXevXsv2v7DDz/E2LFjodFoMGnSJGzfvr3L/Vu2bMHcuXMRHBwMQRBw4MCBLvfX19fjoYcewpgxY+Dl5YWYmBj8v//3/2AwGFz91IiIiIiIiMhNnW1owau7Cp3FptT4IDx83WiMi/BnsYnIBSQtOH3wwQdYsWIFVq9ejby8PCQlJSEjIwPV1dXdtt+zZw/uuusu3HfffcjPz8fChQuxcOFCHDlyxNnGZDJh9uzZeP7557t9jIqKClRUVODFF1/EkSNHsHHjRmRmZuK+++4bkOdIRERERERE7kMURXx9sgYbvj6N2mYz/DQK3DsrDrckR3FRcCIXEkRRFKX65qmpqZg+fTpeffVVAIDNZkN0dDQeeughPPHEExe0X7RoEUwmE7Zt2+Y8NnPmTCQnJ2PDhg1d2paUlCA+Ph75+flITk6+aI4PP/wQP//5z2EymaBQ9G6WodFohFarhcFggL+/f6/OIfIElxq27HB3aswAJyEisuPvbPfBfwsiGmw/7puaO6z4OPcsjlQYAQCTorS4JSkS3mquNkP9Nxz/tnHF72zJyrcWiwW5ublIT08/F0YmQ3p6OrKzs7s9Jzs7u0t7AMjIyOixfW85LuDFik1msxlGo7HLjYiIiIiIiIaG2mYzXtt9GkcqjJALAm5JjsSd06NZbCIaIJIVnGpra2G1WhEeHt7leHh4OPR6fbfn6PX6PrXvbY5nn30W999//0XbrVmzBlqt1nmLjo7u9/ck8nSiKKLeZEFji0XqKERERETkAQr0Rvx9dyGqm+xT6JZdGY/U+GCu1UQ0gDy6lGs0GrFgwQKMHz8ezzzzzEXbrly5EitWrOhyLotORH3TbO7A1vxyFNU24/dbj0AmADPig3Dd2HD4dPPO0nAcmkpEREREg+uHojr892AFRAAxQd64OzUG/hql1LGIhj3JCk4hISGQy+Woqqrqcryqqgo6na7bc3Q6XZ/aX0xTUxPmzZsHPz8/fPLJJ1AqL/4DR61WQ61W9/n7EJFdlbEN72aXoKGl3XnMJgI/FNXjQFkjfpYai1GhvhImJCIiIqLhRBRFfHlMj90FNQCA6XGBuCkpEgoZFwYnGgySFZxUKhVSUlKQlZWFhQsXArAvGp6VlYXly5d3e05aWhqysrLwyCOPOI/t2LEDaWlpffreRqMRGRkZUKvV+PTTT6HRaPr7NIioFyoNrXj9myKYO2wI8lHhpykjEBHghdL6Fmw/XIlKQxs25ZTiwWsSEOSjkjouEREREbm5S21UY7WJ2HqgHLlnGgAA6ePCcM2YME6hIxpEkk6pW7FiBZYsWYJp06ZhxowZWLduHUwmE5YuXQoAWLx4MaKiorBmzRoAwMMPP4w5c+bgpZdewoIFC7B582bs378fr7/+uvMx6+vrUVpaioqKCgBAQUEBAPvoKJ1OB6PRiLlz56KlpQX//ve/uywAHhoaCrlcPpiXgGjY67DZ8FHuWZg7bIgJ8sY9M2Od0+dGhfrigTmj8Ma3RTjb0Ip//3AG/zNnJNQK/ndIRERERP1j6bBh875SnNA3QQCwMDkK0+ODpI5F5HEkLTgtWrQINTU1WLVqFfR6PZKTk5GZmelcGLy0tBSy84Y7zpo1C5s2bcJTTz2FJ598EomJidi6dSsmTpzobPPpp586C1YAcOeddwIAVq9ejWeeeQZ5eXnIyckBACQkJHTJU1xcjLi4uIF6ukQe6euCGlQa2uCtkuNnqTEXrNWklMvws9RYrN9VCL2xDf89WIk7UkZIlJaIiIiIhjJzhxXv7ClBSV0LFDIBd06PwfjI/m3pTkSXRxBFUZQ6xFBkNBqh1WphMBjg788fYEQO5w9vrjS0Yv2uQthEYNH0aCSNCOjxvOJaE974tggCgAevSUBkgBcXDScil+DvbPfBfwsicpXuptSZ263YmF2CM3UtUCtkWJIWh7gQHwnSkacZjn+3uOJ3NldLI6IBs/1wJWwiMCHSH5OjtBdtGx/ig0lRWogAvjiqH5yARERERDQstLVb8fYee7FJo5ThF1fEs9hEJDEWnIhoQJTWmXC6xgSZANwwKaJXCzTOHR8OuSDgVHUzCqubByElEREREQ11be1WbNxTgtL6c8Wm6CBvqWMReTwWnIhoQOzq3H52akwgAr17t/NcsK8aMzoXdPziqB6c8UtEREREF2M+r9jkpZTjvitGYkQgi01E7oAFJyJyufLGVhRU2XcFmTM6tE/nXjM2DEq5gPLGVuQU1w9MQCIiIiIa8tqtNvzrhzPOYtMvZscjKtBL6lhE1IkFJyJyud0F1QCApOgABPuq+3Sur1qB5OhAAMC72SWujkZEREREw4DVJmLzvjIU1ZqgVsiw9Io4RAWw2ETkTlhwIiKXMrS241iFEUDfRzc5pI0MBgB8cbQKFY2tLstGREREREOfzSZiS95ZHK80QiETcM/MWE6jI3JDCqkDENHwsr+kHiLsu86F+2v69Rg6rQbxIT4orjXhyS2HMXeC7qLth+M2pERERER0IVEU8cdtx5Bf1giZANw1IwYjQ32ljkVE3WDBiYhcxmoTsf9MAwBgRlzQZT1W2shgFNeasLekvnNdJw7IJCIiIhruNuWUXvT+rBNVyDpuX77hjpQRGBfhPxixiKgf+BccEbnM7oJqGFrb4a2SY0Lk5f3yHxfhD62XEi0WK45VGl2UkIiIiIiGqtwz9c5i001Jkc51P4nIPbHgREQu43hHampMIBSXOSJJLhMwNSYAAHCgtPEykxERERHRUHaqqgmf5JcDAK4eHepc85OI3BcLTkTkEtXGNuzq3J3ucqfTOTjetTpV3YRmc4dLHpOIiIiIhpaKxla8t7cUNhFIjg7A9ePDpY5ERL3AghMRucT2w5WwiUBMkDdC/NQuecxQPzVGBHrBJgKHzja65DGJiIiIaOhobLHgnewSWDpsGBnig9umRkEQBKljEVEvsOBERC6x7VAlAGBSlNalj5scHQAAyOe0OiIiIiKP0tZuxcY9JWhq60CYnxo/S42FQsY/YYmGCv7XSkSXrdLQiv1nGiAIwEQXF5wmjwiATADKG1tR3dTm0scmIiIiIvdkE0Vs3leK6iYz/DQK3DsrDl4qudSxiKgPWHAiosv2WefopumxQdB6KV362L5qBRLD/AAAB8saXfrYREREROSeMo/ocbKqGUq5gMUz4xDgrZI6EhH1EQtORHTZPjtsLzgtmBwxII8/eYR91NSRCuOAPD4RERERuY/cM/X4rrAWAHD71BGICvSSOBER9QcLTkR0Wc42tCC/tBGCAMyfpBuQ7zEuwh9yQUBNkxlVRk6rIyIiIhquSmpN2JpfAQC4dmwYJo8IkDYQEfUbC05EdFm2d45uSo0PQpifZkC+h0YpR0KYLwDgSIVhQL4HEREREUmrrL4F7+WcgVUUMTHSH9eODZM6EhFdBoXUAYhoaHOs37RgcuSAfp+JUVoUVDXhaLkR140NH9DvRURERESutymntMf72q02bPj6NEwWKyK1GtyREg2ZIAxiOiJyNY5wIqJ+K6tvwcGzBsgEYP7EgZlO5zAuwg8yAdAb21DTZB7Q70VEREREg0cURfznQAUqDW3wUcnx85mxUCn4pyrRUMf/iomo37Z1jm5KGxWMEF/1gH4vb5UCo0Lt0+qOclodERER0bCxr6QBeaUNEADcOSOGO9IRDRMsOBFRv3122L6g44JJAzudzmFilH23uqPcrY6IiIhoWDjb0IL/HrL3KedO0DnfYCSioY8FJyLql5JaE46UGyGXCZg3wNPpHMbq/CAAKG9shaG1fVC+JxERERENDJO5A5tySmG1iRgf4Y+rEkOkjkRELsSCExH1y2edu9PNGhWMIJ/BGfbsp1FiRKAXAOCEnqOciIiIiIYqmyji//aXobG1HcE+KtyRMgICFwknGlZYcCKifnGs33Tj5IhB/b7jIvwBACcqmwb1+xIRDUfr169HXFwcNBoNUlNTsXfv3ou2X7duHcaMGQMvLy9ER0fjN7/5Ddra2gYpLRENJ9+crMGp6mYo5QJ+NjMWGqVc6khE5GIsOBFRn52uacbxSiMUMgEZEwZnOp2Do+B0uqYZ5g7roH5vIqLh5IMPPsCKFSuwevVq5OXlISkpCRkZGaiuru62/aZNm/DEE09g9erVOH78ON5880188MEHePLJJwc5ORENdaV1Jnx1vAoAcHNSFHT+GokTEdFAYMGJiPrss87RTbMTQwZ9F5EwPzWCfFTosIkorG4e1O9NRDScrF27FsuWLcPSpUsxfvx4bNiwAd7e3njrrbe6bb9nzx5cccUVuPvuuxEXF4e5c+firrvuuuSoKCKi87VarNi8vww2EUgaocXUmACpIxHRAGHBiYj6zFFwWjBpcKfTAYAgCBin8wPAaXVERP1lsViQm5uL9PR05zGZTIb09HRkZ2d3e86sWbOQm5vrLDAVFRVh+/btuOGGG3r8PmazGUajscuNiDyXKIrYeqAcjS3tCPRW4pbkKK7bRDSMseBERH1yqqoJBVVNUMoFzB3k6XQOYx3rOOmNsImiJBmIiIay2tpaWK1WhIeHdzkeHh4OvV7f7Tl33303/vjHP2L27NlQKpUYNWoUrr766otOqVuzZg20Wq3zFh0d7dLnQURDS15pAw6XGyATgDunx3DdJqJhjgUnIuoTx2LhVyWGQuullCRDXLAPNEoZTBYryupbJMlARORpdu/ejT/96U/4+9//jry8PGzZsgWfffYZnn322R7PWblyJQwGg/NWVlY2iImJyJ2crmnGpwcrAADXjwtHdJC3xImIaKAppA5AREOHKIr47HDndLpB3p3ufHKZgNHhfjh01oDjnFZHRNRnISEhkMvlqKqq6nK8qqoKOl33o1effvpp3HPPPfjlL38JAJg0aRJMJhPuv/9+/P73v4dMduH7mGq1Gmq12vVPgIjcyqac0oveb7WJ2PD1abRbRYwK9cGVo0MHKRkRSYkjnIio1wqqmlBY3QyVQobrx4df+oQBNO68aXVERNQ3KpUKKSkpyMrKch6z2WzIyspCWlpat+e0tLRcUFSSy+3TYURObyaii/j6ZA3KG1vhpZTjJynRkHHdJiKPwBFORNRrjsXC54wOhZ9Gmul0DqPD/CATgOomM0pqTYgL8ZE0DxHRULNixQosWbIE06ZNw4wZM7Bu3TqYTCYsXboUALB48WJERUVhzZo1AICbbroJa9euxZQpU5CamorCwkI8/fTTuOmmm5yFJyKiH6s0tGLXiWoAwE1JEfCXaEkGIhp8LDgRUa+IougsON0o4XQ6By+VHHEhPiiqMeGr41X45ZUjpY5ERDSkLFq0CDU1NVi1ahX0ej2Sk5ORmZnpXEi8tLS0y4imp556CoIg4KmnnkJ5eTlCQ0Nx00034X//93+legpE5OY6bDZ8lHsWVlHE+Ah/JI0IkDoSEQ0iyafUrV+/HnFxcdBoNEhNTXVutduTDz/8EGPHjoVGo8GkSZOwffv2Lvdv2bIFc+fORXBwMARBwIEDBy54jLa2Njz44IMIDg6Gr68vbr/99gvWMCCiro5VGlFUa4JaIcN146SdTucwTmefVvfVcf73S0TUH8uXL8eZM2dgNpuRk5OD1NRU5327d+/Gxo0bnV8rFAqsXr0ahYWFaG1tRWlpKdavX4+AgIDBD05EQ8LughpUGtrgrZLjluRICJxKR+RRJC04ffDBB1ixYgVWr16NvLw8JCUlISMjA9XV1d2237NnD+666y7cd999yM/Px8KFC7Fw4UIcOXLE2cZkMmH27Nl4/vnne/y+v/nNb/Df//4XH374Ib7++mtUVFTgtttuc/nzIxpOHKObEsJ88emBCmzKKe32Npgc6zjtK2mAoaV9UL83EREREfWsvLEVuwvsf9fdnBQp+XIMRDT4JC04rV27FsuWLcPSpUsxfvx4bNiwAd7e3njrrbe6bf/yyy9j3rx5eOyxxzBu3Dg8++yzmDp1Kl599VVnm3vuuQerVq1Cenp6t49hMBjw5ptvYu3atbj22muRkpKCt99+G3v27MEPP/wwIM+TaKgTRRHbOgtOk6K0Eqc5J8hHhXB/Naw2EbtPdl+oJiIiIqLB1WG14aPcMthEYGKUFpM5lY7II0lWcLJYLMjNze1SGJLJZEhPT0d2dna352RnZ19QSMrIyOixfXdyc3PR3t7e5XHGjh2LmJiYiz6O2WyG0WjsciPyFEfKjSitb4FSLmBs5zQ2d+GYVrfjGKfVEREREbmDb07VoMpoho9KjpuTIqWOQ0QSkazgVFtbC6vV6lyY0iE8PBx6vb7bc/R6fZ/a9/QYKpXqgvUGLvU4a9asgVardd6io6N7/T2JhrpthysAAGN0/lApJF/6rYuxndPqvi6ogaXDJnEaIiIiIs9W22zG7oIaAMCNkyPhq+Y+VUSeyr3+cnRjK1euhMFgcN7KysqkjkQ0KM7fnc6dptM5jAj0QoivCk3mDuwtrpc6DhEREZHHEkUR/zlQjg6biMQwX0we4X59RyIaPJIVnEJCQiCXyy/YHa6qqgo6na7bc3Q6XZ/a9/QYFosFjY2NfXoctVoNf3//LjciT3DwrAFnG1rhrZJjTLif1HEuIBMEXDfWPvKRu9URERERSedAWSNO15igkAm4OYm70hF5OskKTiqVCikpKcjKynIes9lsyMrKQlpaWrfnpKWldWkPADt27OixfXdSUlKgVCq7PE5BQQFKS0v79DhEnuKzQ/bpdNeNC3e76XQO6ePPFZxEUZQ4DREREZHnabF0YPth+6j4a8eGIdhXLXEiIpKapBNqV6xYgSVLlmDatGmYMWMG1q1bB5PJhKVLlwIAFi9ejKioKKxZswYA8PDDD2POnDl46aWXsGDBAmzevBn79+/H66+/7nzM+vp6lJaWoqLC/kdyQUEBAPvIJp1OB61Wi/vuuw8rVqxAUFAQ/P398dBDDyEtLQ0zZ84c5CtA5N5stnPT6RZMikC9ySJxou7NTgiBWiHD2YZWFFQ1ud3C5kRERETDXeYRPUwWK8L81JidGCJ1HCJyA5IOV1i0aBFefPFFrFq1CsnJyThw4AAyMzOdC4OXlpaisrLS2X7WrFnYtGkTXn/9dSQlJeGjjz7C1q1bMXHiRGebTz/9FFOmTMGCBQsAAHfeeSemTJmCDRs2ONv89a9/xY033ojbb78dV111FXQ6HbZs2TJIz5po6Mgva0SFoQ0+KjmuHhMqdZweeankmJ1g79jsOMppdURERESDqbjWhP1nGgAAC5OjoJC556h4Ihpcgsj5J/1iNBqh1WphMBi4nhMNW6v/cwTvZJ/BwuRIrLtzCjbllEodqVt3p8Zg895SPLHlMCaP0OLT5bOljkREboS/s90H/y2Ihp8Oqw2zn98FvbEN0+MCceuUEVJHIhp0d6fGSB3B5VzxO5t7VBJRt9qtNmzrnE53y5QoidNc2nXjwiEIh3HorAEVja2IDPCSOhIRERHRkHepNxx/KKqD3tgGL6UcGRN6v5kTEQ1/HOtIRN36vrAWdSYLgnxUzulq7izUT41psYEAgB3HOK2OiIiIaKC1WDqc/a7rx4fDW8XxDER0DgtORNSt/xywL7x/4+QIKOVD40fF3PH2d9W+PKaXOAkRERHR8PfV8Sq0tluh89dgelyQ1HGIyM0Mjb8iiWhQtVg68MVRe9HmlmT3n07nMHeCfcOBH4rqYWhplzgNERER0fClN7Qhp6geALBgcgTkMkHiRETkblhwIqIL7DhWhRaLFTFB3pgaEyB1nF6LDfbBWJ0frDYRWSc4rY6IiIhoIIiiiG2HKyACmBDpj1GhvlJHIiI3xEm2RMNYb3eV+/GuCo7pdLckR0IQhta7VXPHh+OEvglfHq3CbVO5SwoRERGRqx2rNKKoxgSFTMD8iRFSxyEiN8URTkTURb3Jgm9O1gCwF5yGmrmdu6N8fbIGbe1WidMQERERDS/tVhu2H7bvZHxlYgiCfFQSJyIid8WCExF18dnhSnTYREyI9EdCmJ/UcfpsQqQ/ogK80NpuxXenaqWOQ0RERDSs/FBUh4aWdvhrFJgzOkzqOETkxlhwIqIu/pNfDgBYOIQWCz+fIAi4frx98XDHwudEREREdPlaLVbsLrCPhL9+vA4qBf+cJKKe8ScEETmV1bdg/5kGCAJwU9LQm07n4Nit7qvjVeiw2iROQ0RERDQ87D5ZjdZ2K8L91ZgyhDaWISJpsOBERE6fHrQvFp42Mhg6rUbiNP03Iy4IAd5KNLS0I/dMg9RxiIiIiIa8xhYLsk/XAQAyJuggG2IbyxDR4GPBiYgA2Le33TrEp9M5KOQyXDfWMa2uSuI0REREREPfV8er0WETER/igzHhQ2+dTyIafCw4EREA4HhlE05VN0MllyFjok7qOJfNMa3uy2N6iKIocRoiIiKioUtvaEN+qX3U+LwJOggc3UREvcCCExEBAP5zwD666dqxYdB6KSVOc/muSgyFl1KOsw2tOFxukDoOERER0ZD1xVE9RAATo7SIDvKWOg4RDREsOBERbDbRuX7TwilDd7Hw83mp5Lh2nH2r3m2HKiVOQ0RERDQ0FdU0o6CqCTIBmNu5EzARUW+w4EREyCmuR6WhDX4aBa4eEyZ1HJe5aXIEAOCzQ5WcVkdERETUR6Io4oujegDA9LgghPiqJU5EREMJC05EhE8P2qfT3TAxAhqlXOI0rnP1mDD4qOQob2xFXmmj1HGIiIiIhpTdJ2tQ1tAKpVzAtWOHz5uSRDQ4WHAi8nAdVhs+65xydkvy8JhO56BRynF959DvbYcqJE5DRERENHSIooi/7jgJAJgZHww/zdBf45OIBpdC6gBEJK2TVU0wtnXAX6NAUa0JJXUtUkdyqRsnR2LrgQpsP1yJpxeMh0zGXVWIiIiILiXreDUOnTVAJZfhytGhUschoiGIBSciD3egrBEAMHlEAGTDcIvbK0eHwE+jQJXRjH0l9UgdGSx1JCIiIiLJbcop7fE+URSxflchACBtVDB81fyzkYj6jlPqiDxYW7sVJ/RNAIDk6ABpwwwQtUKOjAk6ANytjoiIiKg3jlcaUWFog0ohw5UJIVLHIaIhigUnIg92tMKIDpuIUD81IrQaqeMMmBs7d6v7/EglOqw2idMQERERuS+bKOKr49UAgFmjguHN0U1E1E8sOBF5sIOd0+mSRgRAGIbT6RyuSAhBoLcStc0W5BTXSx2HiIiIyG0drTBCb2yDWiHDbI5uIqLLwIITkYcytrXjdE0zgOE7nc5BKZdh3kTHtDruVkdERETUHZsoIut4FQD7G3beKo5uIqL+Y8GJyEMdPmuACCAmyBtBPiqp4wy4GydHAgA+P6JHO6fVEREREV3gaIUR1U1maJQyXDGKo5uI6PKw4ETkoQ6dbQQATB6hlTbIIEmND0KIrwqNLe34vrBW6jhEREREbkUURXxd4Fi7KQReKrnEiYhoqGPBicgDNbRYUNbQCgHAxEjPKDgp5DLcMMm+ePinBzitjoiIiOh8p6qbUWFog1IuYNbIYKnjENEwwEm5RB7o8FkDACAuxAf+XkqJ01y+TTmlvWrnrbS/U7ftUCUmjwiASnFhzf3u1BiXZiMiIiIaCnYX1AAAZsQFcWc6InIJjnAi8kCHy+0Fp0lRnjG6ySE6yBvBPipYrDYcrTBIHYeIiIjILZypM6GkzgS5IGB2YqjUcYhomGDBicjD1DWbUd7YOZ3OwwpOgiA4d+TLL2uUNAsRERGRu/j6pH1005SYAGiHweh3InIPLDgReRjH6KZRob7w9cDh0o6C0+nqZhhb26UNQ0RERCSxSkMrTuibIAC4iqObiMiFWHAi8jDO6XQesjvdjwX7qhET5A0RwMHOnfqIiIiIPJVjdNPEKC1C/NQSpyGi4YQFJyIPUtNkRqWhDTIBmBDpL3UcyUyJCQAA5Jc2SpqDiIiISEp1zWbnZjJzRnN0ExG5FgtORB7kUHkjACAhzBfeKs+bTucwOSoAcpkAvbENlYZWqeMQERERSeLbU7UQAYwO90VkgJfUcYhomJG84LR+/XrExcVBo9EgNTUVe/fuvWj7Dz/8EGPHjoVGo8GkSZOwffv2LveLoohVq1YhIiICXl5eSE9Px6lTp7q0OXnyJG655RaEhITA398fs2fPxq5du1z+3IjcjeMdrMlRAdIGkZiXSo6xOj8AwAGOciIiIiIPZDJ3IK+0AQBwFUc3EdEAkLTg9MEHH2DFihVYvXo18vLykJSUhIyMDFRXV3fbfs+ePbjrrrtw3333IT8/HwsXLsTChQtx5MgRZ5u//OUveOWVV7Bhwwbk5OTAx8cHGRkZaGtrc7a58cYb0dHRgZ07dyI3NxdJSUm48cYbodfrB/w5E0lFb2xDdZMZcpmA8R48nc5hSufi4QfPNsImitKGISIiIhpkOcX16LCJiArwQnywj9RxiGgYkrTgtHbtWixbtgxLly7F+PHjsWHDBnh7e+Ott97qtv3LL7+MefPm4bHHHsO4cePw7LPPYurUqXj11VcB2Ec3rVu3Dk899RRuueUWTJ48Ge+++y4qKiqwdetWAEBtbS1OnTqFJ554ApMnT0ZiYiL+/Oc/o6WlpUvhimi4Ody5QPboMF9olHJpw7iB0To/eCnlMLZ14HRNs9RxiIiIiAaNucOKH4rqAABXJIRAEASJExHRcCRZwclisSA3Nxfp6ennwshkSE9PR3Z2drfnZGdnd2kPABkZGc72xcXF0Ov1XdpotVqkpqY62wQHB2PMmDF49913YTKZ0NHRgX/84x8ICwtDSkpKj3nNZjOMRmOXG9FQIYriebvTBUgbxk0oZDJM7typj9PqiMhT9XVpg8bGRjz44IOIiIiAWq3G6NGjL1jegIiktSmn9JK33285gmZzB/w1CkyK8sydi4lo4ElWcKqtrYXVakV4eHiX4+Hh4T1ObdPr9Rdt7/h4sTaCIOCrr75Cfn4+/Pz8oNFosHbtWmRmZiIwMLDHvGvWrIFWq3XeoqOj+/aEiSRU02RGbbMFcpmAcZ1rF9G5aXVHK4wwd1ilDUNENMj6urSBxWLB9ddfj5KSEnz00UcoKCjAG2+8gaioqEFOTkSXQxRFfH+6FgCQNjIYchlHNxHRwJB80fDBJooiHnzwQYSFheHbb7/F3r17sXDhQtx0002orKzs8byVK1fCYDA4b2VlZYOYmujyHKu0j8gbFeoDNafTOUUHeSPYRwWL1Yaj5Ry1SESepa9LG7z11luor6/H1q1bccUVVyAuLg5z5sxBUlLSICcnostRVGtCpaENSrmA6fFBUschomGsXwWnoqKiy/7GISEhkMvlqKqq6nK8qqoKOp2u23N0Ot1F2zs+XqzNzp07sW3bNmzevBlXXHEFpk6dir///e/w8vLCO++802NetVoNf3//LjeiocJRcBofwSHT5xMEASmx9pGNuZ27tBARuTtX9MP6s7TBp59+irS0NDz44IMIDw/HxIkT8ac//QlWK0eIEg0l3xfaRzdNjQmEt0ohcRoiGs76VXBKSEjANddcg3//+99ddn/rC5VKhZSUFGRlZTmP2Ww2ZGVlIS0trdtz0tLSurQHgB07djjbx8fHQ6fTdWljNBqRk5PjbNPS0gLA3qk6n0wmg81m69dzIXJnxtZ2nG1ohQBgXASn0/1YcnQABADFtSbUmyxSxyEiuiRX9MP6s7RBUVERPvroI1itVmzfvh1PP/00XnrpJTz33HM9fh+ugUnkXmqazDihb4IA4IpRIVLHIaJhrl8Fp7y8PEyePBkrVqyATqfD//zP/1xykcnurFixAm+88QbeeecdHD9+HL/61a9gMpmwdOlSAMDixYuxcuVKZ/uHH34YmZmZeOmll3DixAk888wz2L9/P5YvXw7APlrhkUcewXPPPYdPP/0Uhw8fxuLFixEZGYmFCxcCsBetAgMDsWTJEhw8eBAnT57EY489huLiYixYsKA/l4PIrR3X2zv3IwK94KdRSpzG/QR4qzAq1BcAkM9RTkQ0BLiqH9ZXNpsNYWFheP3115GSkoJFixbh97//PTZs2NDjOVwDk8i97Olcu2mMzg8hfmqJ0xDRcNevglNycjJefvllVFRU4K233kJlZSVmz56NiRMnYu3ataipqenV4yxatAgvvvgiVq1aheTkZBw4cACZmZnOd9tKS0u7rKs0a9YsbNq0Ca+//jqSkpLw0UcfYevWrZg4caKzzeOPP46HHnoI999/P6ZPn47m5mZkZmZCo9EAsE/ly8zMRHNzM6699lpMmzYN3333Hf7zn/9wDQIalo5VdE6ni+R0up5MjQ0AAOSVNsBmE6UNQ0R0Ca7oh/VnaYOIiAiMHj0acvm5tQDHjRsHvV4Pi6X7EaJcA5PIfbRYOpDX+eba7ASObiKigSeIonjZf12ZzWb8/e9/x8qVK2GxWKBSqfDTn/4Uzz//PCIiIlyR0+0YjUZotVoYDAau50Ru663vivG/nx2HVRTxm/TRCOU7Wd2ydNiw5vPjMHfYsPn+mZg5MljqSETkQsP9d3Z/+2GpqamYMWMG/va3vwGwj2CKiYnB8uXL8cQTT1zQ/sknn8SmTZtQVFTkXJrg5ZdfxvPPP4+KiopeZR3u/xZE7mBTTmm3x789VYPPj+gRodVg+TUJEATuTkfkKnenxkgdweVc8Tv7snap279/P379618jIiICa9euxaOPPorTp09jx44dqKiowC233HI5D09El+lUdTOsoogQXxWLTRehUsgwKco+Auyj3LMSpyEi6p3L7Yf1dWmDX/3qV6ivr8fDDz+MkydP4rPPPsOf/vQnPPjggwP6PIno8tlEETnF9QCAtJHBLDYR0aDo17YEa9euxdtvv42CggLccMMNePfdd3HDDTc43+2Kj4/Hxo0bERcX58qsRNRHJ/VNAIAx4Vws/FJSYgOx/0wDth+uxB9ungAfNXdtISL35Kp+2KJFi1BTU4NVq1ZBr9cjOTn5gqUNzt9kJTo6Gl988QV+85vfYPLkyYiKisLDDz+M3/3udwP2XInINU5VNaHeZIFGKcPkEQFSxyEiD9Gvv6hee+01/OIXv8C9997b41DtsLAwvPnmm5cVjoj6z2YTcbKqs+Ck47SFS4kJ8kawjwp1Jgs+P6LHHSkjpI5ERNQtV/bDli9f7tx85cd27959wbG0tDT88MMPfcpLRNL7ocg+uiklJhAqxWVNciEi6rV+FZx27NiBmJiYLu96AYAoiigrK0NMTAxUKhWWLFnikpBE1HdHK4xoMndAJZchLthb6jhuTxAETI0NxI5jVfgot4wFJyJyW+yHEVFf1JsszjchU7lOJRENon6Vt0eNGoXa2toLjtfX1yM+Pv6yQxHR5dtVUA0ASAjzhULOd7J6Y0p0AATB/i5gWX2L1HGIiLrFfhgR9cXe4jqIABLDfBHiyzU9iWjw9Ouv0J42tmtuboZGo7msQETkGo6CE9dv6r0AbxWuGGXfJnhLXrnEaYiIusd+GBH1VrvVhv1nGgAAqfEc3UREg6tPU+pWrFgBwD71ZNWqVfD2PjdNx2q1IicnB8nJyS4NSER9V9dsxoGyRgDAaB0LTn1xR8oIfFdYi4/yyvDQtQmQybiLCxG5B/bDiKivDpcb0GKxIsBLibER7BMS0eDqU8EpPz8fgP2dtcOHD0OlUjnvU6lUSEpKwqOPPurahETUZ9+cqoEoAhFaDbReSqnjDCkZE3TwVStQVt+KfSX1XOuAiNwG+2FE1Fc/FNUBAGbEB0Em8E00IhpcfSo47dq1CwCwdOlSvPzyy/D3585XRO7o25P2tT0Sw3wlTjL0eKnkuHFyBDbvK8NHuWdZcCIit8F+GBH1xdmGFpxtaIVcJmBaXJDUcYjIA/VrDae3336bnRwiNyWKIr4ttBecEsI4dLo/HDvUfXa4EiZzh8RpiIi6Yj+MiHojp6geADApSgtfdb82Jyciuiy9/slz2223YePGjfD398dtt9120bZbtmy57GBE1D8FVU2oaTJDo5QhNtj70ifQBVJiAxEX7I2SuhZkHtHj9s4CFBGRVNgPI6K+aGu34lB5IwAgNZ6jm4hIGr0uOGm1Wgid8361Wu2ABSKiy/PdKfvophnxwVDK+zWI0eMJgoA7UkbgxS9P4qPcsyw4EZHk2A8jor44UNaIdquIMD81YoL4BiQRSaPXBae3336728+JyL1801lwuioxROIkQ9utU0fgpR0nkV1Uh7L6FkSzs0ZEEmI/jIj6Yn+JfTrd9LggZ7GaiGiw9Wv4Q2trK1paWpxfnzlzBuvWrcOXX37psmBE1Hdt7VbsLbbvRnJlYqjEaYa2qAAvzBplXzB8S165xGmIiM5hP4yILqa8oRUVhjbIZQKmRAdIHYeIPFi/Vo+75ZZbcNttt+GBBx5AY2MjZsyYAZVKhdraWqxduxa/+tWvXJ2TiHoh90wD2tptCPNTY3S4L3LPNEgdacjZlFPq/DxS6wUA2LinGMG+qi7bCd+dGjPo2YiIAPbDiOji9nWObpoQ6Q9vLhZORBLq1winvLw8XHnllQCAjz76CDqdDmfOnMG7776LV155xaUBiaj3vu2cTjc7MYTDp11gQqQWaoUMDS3tOFPXcukTiIgGAfthRNQTk7kDB842AgBmxHGxcCKSVr8KTi0tLfDzs2+3/uWXX+K2226DTCbDzJkzcebMGZcGJKLe23O6s+CUwPWbXEGlkGFSlH1x3jyOFiMiN8F+GBH1ZNuhClg6bAj2USE+xEfqOETk4fo1xjIhIQFbt27Frbfeii+++AK/+c1vAADV1dXw9/d3aUAi6h1DazuOlBsAALNGseDkKlNjArH/TAMOlxtwY1IE1Aq51JGIyMOxH0bkuc6f+t+d13YXAuBi4UTkHvo1wmnVqlV49NFHERcXh9TUVKSlpQGwv8s2ZcoUlwYkot7ZW1wPmwiMDPGBTquROs6wERvsjWAfFSxWGw6dNUgdh4iI/TAi6pbe0IayhlbIBGBKTIDUcYiI+jfC6Y477sDs2bNRWVmJpKQk5/HrrrsOt956q8vCEVHvOabTpXXurEauIQgCpscFIfOoHvtK6jGd6yEQkcTYDyOi7jgWCx8X4Q8/jVLiNERE/Sw4AYBOp4NOp+tybMaMGZcdiIj6J/t0HQAWnAbClJgAfHlMj7MNrag0tCKic/c6IiKpsB9GROdrt9qQX2Zfb5JvjhGRu+hXwclkMuHPf/4zsrKyUF1dDZvN1uX+oqIil4Qjot6pazbjhL4JADBzJAtOruanUWJchD+OVhixr6QBNyex4ERE0mE/jIh+7GiFEW3tNgR4K5EQ5it1HCIiAP0sOP3yl7/E119/jXvuuQcRERFckI5IYjnF9iHUY3V+CPFVS5xmeJoeF4SjFUYcKGvA/Im6S59ARDRA2A8joh9z7KY7NSYQMv5MICI30a+C0+eff47PPvsMV1xxhavzEFE/ONZv4uimgZMQ5osAbyUaW87tBkhEJAX2w4jofI0tFpyuaQZgLzgREbmLfu1SFxgYiKAgzg0mcheO9Ztmcf2mASMTBEyLtXfiHItyEhFJgf0wIjpfXmkjRNh3Kg7yUUkdh4jIqV8Fp2effRarVq1CS0uLq/MQUR/VNptxusYEQQBmxPMPkIGUEhsEAUBJXQsKq5uljkNEHor9MCJyEEUReaX26XQpsRzdRETupV9T6l566SWcPn0a4eHhiIuLg1LZddvNvLw8l4Qjokvb17l+05hwPwR4812tgaT1UmKMzg8n9E34YF8pfr9gvNSRiMgDsR9GRA4ldS2oN1mgVsgwIVIrdRwioi76VXBauHChi2MQUX85FgxP5eimQTE9Lggn9E34OK8cj2aMgVohlzoSEXkY9sOIyMGxWPikKC1Uin5NXiEiGjD9KjitXr3a1TmIqJ/2dhacprPgNChGh/vBX6NAvcmCHceqcOPkSKkjEZGHYT+MiADA3GHF4c6NTDidjojcUb/L4I2NjfjnP/+JlStXor7e/gdvXl4eysvLXRaOiC7O0NqO43ojAGBGHAtOg0EuE5ydun9ln5E4DRF5KvbDiOhIuREWqw3BPirEBHlLHYeI6AL9GuF06NAhpKenQ6vVoqSkBMuWLUNQUBC2bNmC0tJSvPvuu67OSUTdyDvTAFEE4kN8EOavkTqOx5gRH4xvTtUip7gexyuNGBfhL3UkIvIg7IcREQDknjm3WLggCBKnISK6UL9GOK1YsQL33nsvTp06BY3m3B+5N9xwA7755huXhSOinm3KKcXb35cAAIJ9VNiUU3rBjQaG1kuJjAnhAIB3s0ukDUNEHof9MCKqazajpM4EAcCUGE6nIyL31K+C0759+/A///M/FxyPioqCXq+/7FBE1DsldSYAQFywj8RJPM+StDgAwCf55WhssUgbhog8CvthRJRX2ggASAjzhdZLefHGREQS6VfBSa1Ww2g0XnD85MmTCA0NvexQRHRplg4bzja0AADiQlhwGmwz4oMwVueHtnYb/m9/mdRxiMiDsB9G5Nlsooj8Uvt0uqlcLJyI3Fi/Ck4333wz/vjHP6K9vR0AIAgCSktL8bvf/Q633357nx5r/fr1iIuLg0ajQWpqKvbu3XvR9h9++CHGjh0LjUaDSZMmYfv27V3uF0URq1atQkREBLy8vJCeno5Tp05d8DifffYZUlNT4eXlhcDAQG4xTENOWUMLbKJ9elegN9/ZGmyCIODeWXEAgHf2nEGH1SZtICLyGK7shxHR0FNUY0Jjazs0ShnGcx1JInJj/So4vfTSS2hubkZoaChaW1sxZ84cJCQkwM/PD//7v//b68f54IMPsGLFCqxevRp5eXlISkpCRkYGqquru22/Z88e3HXXXbjvvvuQn5+PhQsXYuHChThy5IizzV/+8he88sor2LBhA3JycuDj44OMjAy0tbU523z88ce45557sHTpUhw8eBDff/897r777v5cCiLJlNQ6ptN5c6FIiSycEoVgHxXKG1vx2eFKqeMQkYdwVT+MiIamvM7RTUkjAqCU93vTcSKiASeIoij29+Tvv/8eBw8eRHNzM6ZOnYr09PQ+nZ+amorp06fj1VdfBQDYbDZER0fjoYcewhNPPHFB+0WLFsFkMmHbtm3OYzNnzkRycjI2bNgAURQRGRmJ3/72t3j00UcBAAaDAeHh4di4cSPuvPNOdHR0IC4uDn/4wx9w33339fepw2g0QqvVwmAwwN+f7yzQ4Lv2pd0oqjHhluRIpMYHSx3H49ydGgMAeCXrFNbuOIkJkf7Y9tBsFv+I3NBw/Z19uf0wKQzXfwuiwfLWd8X40/bj6LCJ+NWcUYgO8pY6EhHh3N8Gw4krfmcr+nqCzWbDxo0bsWXLFpSUlEAQBMTHx0On00EUxV7/sWWxWJCbm4uVK1c6j8lkMqSnpyM7O7vbc7Kzs7FixYouxzIyMrB161YAQHFxMfR6fZcOl1arRWpqKrKzs3HnnXciLy8P5eXlkMlkmDJlCvR6PZKTk/HCCy9g4sSJPeY1m80wm83Or7tbO4FosFg6bCir71y/iQuGS+qembF4bfdpHK0wYs/pOlyRECJ1JCIaxlzVDyOioenQWQM6bCLC/NQYEegldRwioovq0xhMURRx880345e//CXKy8sxadIkTJgwAWfOnMG9996LW2+9tdePVVtbC6vVivDw8C7Hw8PDe9xhRa/XX7S94+PF2hQVFQEAnnnmGTz11FPYtm0bAgMDcfXVV6O+vr7HvGvWrIFWq3XeoqOje/1ciVztcLkB7VYR3io5wvzUUsfxaIE+Kvx02ggAwD++KZI4DRENZ67shxHR0OSYTpcSG8gCMxG5vT4VnDZu3IhvvvkGWVlZyM/Px/vvv4/Nmzfj4MGD+Oqrr7Bz5068++67A5XVJWw2+8K+v//973H77bcjJSUFb7/9NgRBwIcfftjjeStXroTBYHDeysq4KxVJZ1+JvTgaF+zDzoYb+OWVIyETgG9O1uDQ2Uap4xDRMDUc+mFE1H+F1c0orW+BTACSowOkjkNEdEl9Kji9//77ePLJJ3HNNddccN+1116LJ554Au+9916vHiskJARyuRxVVVVdjldVVUGn03V7jk6nu2h7x8eLtYmIiAAAjB8/3nm/Wq3GyJEjUVpa2mNetVoNf3//Ljciqewt7iw4hXA6nTuIDvLGwilRAICXv7pwV0wiIldwZT+MiIaej3LPAgBGh/vBT8MdionI/fWp4HTo0CHMmzevx/vnz5+PgwcP9uqxVCoVUlJSkJWV5Txms9mQlZWFtLS0bs9JS0vr0h4AduzY4WzvWMPg/DZGoxE5OTnONikpKVCr1SgoKHC2aW9vR0lJCWJjY3uVnUhKVpvoHOEUz/Wb3MZD1yZCJgBZJ6o5yomIBoQr+2FENLR0WG3YkmcvOE2NCZQ4DRFR7/Rp0fD6+voL1kc6X3h4OBoaGnr9eCtWrMCSJUswbdo0zJgxA+vWrYPJZMLSpUsBAIsXL0ZUVBTWrFkDAHj44YcxZ84cvPTSS1iwYAE2b96M/fv34/XXXwcACIKARx55BM899xwSExMRHx+Pp59+GpGRkVi4cCEAwN/fHw888ABWr16N6OhoxMbG4oUXXgAA/OQnP+nL5SCSxAm9EU1tHVArZNBpNVLHoU7xIT5YOCUKW/LK8fJXp/DmvdOljkREw4yr+2FE5D425fQ80wIACvRNqG4yw1slx9gIv0FKRUR0efpUcLJarVAoej5FLpejo6Oj14+3aNEi1NTUYNWqVc7d4jIzM52dqdLSUshk5wZhzZo1C5s2bcJTTz2FJ598EomJidi6dWuX3eUef/xxmEwm3H///WhsbMTs2bORmZkJjebcH+YvvPACFAoF7rnnHrS2tiI1NRU7d+5EYCDfLSD3t69zOl1ssDfkMq7f5E4eujYRW/PLkXWiGvmlDZjCdyCJyIVc3Q8joqEjt3Ox8KToAChkfZqkQkQkGUEURbG3jWUyGebPnw+1uvtdscxmMzIzM2G1Wl0W0F0ZjUZotVoYDAau50SD6tfv5WL7YT3mjg/H1WPCpI5DP/JR7lnklTYgLtgby64ciZ/N5FRdIqkNl9/Zw6EfNlz+LYhc7WIjnFosHVjz+QlYbSKWX5OAyACvQUxGRL1xd2qM1BFczhW/s/s0wmnJkiWXbLN48eJ+BSGiSxNF8dyC4Vy/yS1dPz4ch842oqSuBccrm6SOQ0TDCPthRJ7pYFkjrDYREVoNi01ENKT0qeD09ttvD1QOIuqFoloTapstUClkGBHIDoc70nopMTshBLtP1iDzaCVW3zweSjmHvhPR5WM/jMgzOabTpcRyqj4RDS38K4hoCHGMbpoSHQAFixhu66rRofBRyVHbbLnkIqBEREREPak0tKKisQ1yQUDSiACp4xAR9Qn/YiUaQhwLhqfGB0mchC5Go5TjunH2zQ9e/LIANU1miRMRERHRUJR7xj66aVyEH3zUfZqcQkQkORaciIaQnM6C03QWnNzejPggRAZo0NTWgTWfH5c6DhEREQ0xHTYbDpQ1AuB0OiIamlhwIhoizja0oLyxFXKZgKkx7HS4O5kg4JakKAgCsCWvHDlFdVJHIiIioiHkRGUTWixW+GsUSAjzkzoOEVGfseBENETsK7GPbpoYpeWQ6iEiOsgbd82wb5H6+61H0NbuvluVE5FnWr9+PeLi4qDRaJCamoq9e/f26rzNmzdDEAQsXLhwYAMSeTDHdLopMYGQywSJ0xAR9R0LTkRDxN5ie6eD6zcNLY9njEGonxqF1c3461cnpY5DROT0wQcfYMWKFVi9ejXy8vKQlJSEjIwMVFdXX/S8kpISPProo7jyyisHKSmR5zG2tuNkVRMAIIUj24loiGLBiWiI2Ftsn5I1PY4Fp6EkwFuFP906CQDwxjdFzncriYiktnbtWixbtgxLly7F+PHjsWHDBnh7e+Ott97q8Ryr1Yqf/exn+MMf/oCRI0cOYloiz5Jf1ggRQGyQN0L81FLHISLqF87LIRoCapvNOF1jAgBMj+O7XEPN9ePDcdvUKGzJK8djHx7E9oevhEYpd96/Kae0V49zd2rMQEUkIg9jsViQm5uLlStXOo/JZDKkp6cjOzu7x/P++Mc/IiwsDPfddx++/fbbS34fs9kMs/ncTp1Go/HyghN5AFEUkXvGvpQCFwsnoqGMI5yIhoB9nbvTjdX5IcBbJXEa6o/VN05AuL8aRbUmvPBFgdRxiMjD1dbWwmq1Ijw8vMvx8PBw6PX6bs/57rvv8Oabb+KNN97o9fdZs2YNtFqt8xYdHX1ZuYk8QWl9C2qbLVDKBUyK0kodh4io31hwIhoCcjoLTjO4ftOQpfVW4s+3TQYAvPV9MfZ2/psSEQ0FTU1NuOeee/DGG28gJCSk1+etXLkSBoPBeSsrKxvAlETDg2P6/aQoLdTnjYgmIhpqOKWOaAhw7FDH9ZuGtmvGhuGn00bg//afxWMfHcTnD18JbxV/DBPR4AsJCYFcLkdVVVWX41VVVdDpdBe0P336NEpKSnDTTTc5j9lsNgCAQqFAQUEBRo0adcF5arUaajXXnyHqLUuHDYfKDQCAlFj2+4hoaOMIJyI3Z2xrx7FK+5oXHOE09D1143hEaDU4U9eCv2Ryah0RSUOlUiElJQVZWVnOYzabDVlZWUhLS7ug/dixY3H48GEcOHDAebv55ptxzTXX4MCBA5wqR+QiR8oNsHTYEOSjQlywt9RxiIguC99aJ3JzuSUNEEUgLtgb4f4aqePQZfLXKPH87ZOx+K292LinBBkTLhxJQEQ0GFasWIElS5Zg2rRpmDFjBtatWweTyYSlS5cCABYvXoyoqCisWbMGGo0GEydO7HJ+QEAAAFxwnIj6L7fUPp0uJTYQgiBInIaI6PKw4ETk5rh+0/Bz1ehQ3DUjGu/vLcPjHx/EL66Ih1rBNRqIaHAtWrQINTU1WLVqFfR6PZKTk5GZmelcSLy0tBQyGQfDEw2WumYzimtNEABMiQ6QOg4R0WVjwYnIzXH9puHpyRvG4ZuTtSirb0XmET1uSY6SOhIReaDly5dj+fLl3d63e/fui567ceNG1wci8mB5naObEsJ8uSsxEQ0LfNuKyI21WDpw6GwjACA1PljaMORSfp1T6wD7KLbC6maJExEREZFUbKKIvNJGAPbpdEREwwELTkRubF9JA9qtIqICvBAd5CV1HHKx2Ykh+PnMGADAlvyzMLdbJU5EREREUjhV1QxDazu8lHKMi/CXOg4RkUtwSh2Rm9mUU+r8PPOIHgAQ7q/B+3vLpIpEl+H8f8/ujAr1RaC3Eg0t7fj8qB4LObWOiIjI4ziWUJgaEwClnGMCiGh44E8zIjdWVGufZjUy1EfiJDRQ1Ao5bps6AgCwr7geZfUtEiciIiKiwVRlbMMJvREAMI1rdhLRMMKCE5Gbamu3oryhFQAwMoQFp+FsVKgvpkQHQATwn4PlsImi1JGIiIhokHy4vww2EYgN9ka4v0bqOERELsOCE5GbKqk1QQQQ7KPiTiUeYN5EHTRKGSoa27C3uF7qOERERDQIbDbRuWzCDI5uIqJhhgUnIjd1uobT6TyJn0aJ68frAABfHtPDZO6QOBERERENtG8La1He2AqNUoaJUVqp4xARuRQLTkRuqqjWBAAYGeorcRIaLKnxQdD5a9DWbsPugmqp4xAREdEAe79zc5EpMYFcLJyIhh3uUkfkhlrMHdAb2gBw/SZPIhMEzJ+ow9t7SvBDUT1mjgxGsK9a6lhERETUTxfbrdbY1o4vj9l3JJ7O6XRENAyxjE7khoo6128K81PDT6OUOg4NosRwPySG+cIqivjyWJXUcYiIiGiA5J1pgE0EYoK8oeNi4UQ0DLHgROSGzk2n4+gmTzRvog4CgMPlBpxtaJE6DhEREbmYTRSxr8S+SQgXCyei4YoFJyI3VORYMDyE6zd5ogitF5KjAwAAWce5lhMREdFwc7qmGQ0t7dAoZZg0gouFE9HwxIITkZtpamtHdZMZArh+kye7dmwYZAJQUNWEsnqOciIiIhpOcorso5uSo7lYOBENX/zpRuRmijun0+m0Gnirua6/pwr2VTtHOe08wVFOREREw0VjiwXHK40A7DvUEhENVyw4EbmZ0zWd6zdxdJPHu2bMuVFOXMuJiIhoeNhbXA8R9rU6w7lYOBENYyw4EbkZ5/pNoVy/ydOdP8ppV0GNtGGIiIjosnVYbc7FwmfGB0uchohoYLHgRORGKg2tqDNZIACI5wgnAjBndBgEACcqjSisbpY6DhEREV2Gw+UGmCxWaL2UGBfhL3UcIqIB5RYFp/Xr1yMuLg4ajQapqanYu3fvRdt/+OGHGDt2LDQaDSZNmoTt27d3uV8URaxatQoRERHw8vJCeno6Tp061e1jmc1mJCcnQxAEHDhwwFVPiahfsk/XAQCiAr2gUcolTkPuINRPjXER/hABvPFNkdRxiIiI6DL8UGTv682ID4JcJkichohoYElecPrggw+wYsUKrF69Gnl5eUhKSkJGRgaqq7tfJHfPnj246667cN999yE/Px8LFy7EwoULceTIEWebv/zlL3jllVewYcMG5OTkwMfHBxkZGWhra7vg8R5//HFERkYO2PMj6otvTtqnTY3idDo6z1WJIQCAT/LLUWW88OcYERERub+zDS0oa2iFXBAwLTZQ6jhERANO8oLT2rVrsWzZMixduhTjx4/Hhg0b4O3tjbfeeqvb9i+//DLmzZuHxx57DOPGjcOzzz6LqVOn4tVXXwVgH920bt06PPXUU7jlllswefJkvPvuu6ioqMDWrVu7PNbnn3+OL7/8Ei+++OJAP02iS7LZRHx7qhYAkBjOghOdExPsg9hgb1isNrz1fbHUcYiIiKgffiiyr900aYQWfhqlxGmIiAaepAUni8WC3NxcpKenO4/JZDKkp6cjOzu723Oys7O7tAeAjIwMZ/vi4mLo9foubbRaLVJTU7s8ZlVVFZYtW4Z//etf8Pb2vmRWs9kMo9HY5UbkSscqjagzWaBSyBATdOnXJHmWqxJDAQCbckphMndInIaIiIj6wmTuwKGzjQCAmfFB0oYhIhokkhacamtrYbVaER4e3uV4eHg49Hp9t+fo9fqLtnd8vFgbURRx77334oEHHsC0adN6lXXNmjXQarXOW3R0dK/OI+qtr8+bTqeQST74kNzMGJ0f4oK90dTWgS355VLHISIioj7IPdOADpuIyAANovnGIhF5CI/8q/Zvf/sbmpqasHLlyl6fs3LlShgMBuetrKxsABOSJ3IUnBLDOJ2OLiQTBCyZFQcA2Ph9MURRlDYQERER9YpNFJFTbF8sfGZ8MASBi4UTkWeQtOAUEhICuVyOqqqqLserqqqg0+m6PUen0120vePjxdrs3LkT2dnZUKvVUCgUSEhIAABMmzYNS5Ys6fb7qtVq+Pv7d7kRuUpTWzvyzjQAAEaH+0mchtzVHSkj4KtW4HSNybneFxEREbm3YxVGNLS0w0spx+QRAVLHISIaNJIWnFQqFVJSUpCVleU8ZrPZkJWVhbS0tG7PSUtL69IeAHbs2OFsHx8fD51O16WN0WhETk6Os80rr7yCgwcP4sCBAzhw4AC2b98OwL5j3v/+7/+69DkS9cae03XosImID/FBkI9K6jjkpvw0StyRMgIAsHFPibRhiIiIqFe+L7S/SZQ6MggqhUdOMCEiD6WQOsCKFSuwZMkSTJs2DTNmzMC6detgMpmwdOlSAMDixYsRFRWFNWvWAAAefvhhzJkzBy+99BIWLFiAzZs3Y//+/Xj99dcBAIIg4JFHHsFzzz2HxMRExMfH4+mnn0ZkZCQWLlwIAIiJiemSwdfXPoVp1KhRGDFixCA9c6JzHNPp5owOlTgJubsls+LwTnYJdp6oRnGtCfEhPlJHIiIioh6U1bfgTH0L5IKAmSODpY5DRDSoJC84LVq0CDU1NVi1ahX0ej2Sk5ORmZnpXPS7tLQUsvMWUJ41axY2bdqEp556Ck8++SQSExOxdetWTJw40dnm8ccfh8lkwv3334/GxkbMnj0bmZmZ0Gg0g/78iC5FFEXsOlENwF5wqjS0SZyI3Fl8iA+uGROGnSeq8c6eEjxz8wSpIxEREVEPvusc3ZQUrYW/RilxGiKiwSWIXHm2X4xGI7RaLQwGA9dzostypNyAG//2HbyUcuSvuh5b8rgDGXXv7lT76MxvTtZg8Vt74atWIHvltfBjB5boovg7233w34I8ydmGFlz1l12wicBD1yYgQusldSQiGiCOfvpw4orf2ZxETCSxr47bF7i/MjEEGqVc4jQ0FFyZGIKEMF80mzvwUe5ZqeMQERFRN97ZUwKbCIwK9WGxiYg8EgtORBLLOm6fTpc+LlziJDRUCIKAJbPiAHR2Zm0cqEpEROROmtrasXlvGQBgdkKIxGmIiKQh+RpORJ5Mb2jD4XIDBAG4ZmyY1HFoCLltShT+knkCJXUt2H2yGteOZcGSiIhoMG3KKe3xvu8La9Fk7kCorxqJ4X6DmIqIyH1whBORhLJO2KfTJY0IQKifWuI0NJT4qBW4c3o0AGDjnjMSpyEiIiIHq03EntP2xcKvSAiBTBAkTkREJA0WnIgk5JhOd/14jk6hvlucFgdBsC8iXljdLHUcIiIiAnCs0oiGlnZ4q+SYEhMgdRwiIslwSh2RRJrNHc6tcq8bx+l0dGndDd0fq/PH8Uojntp6GDcnRQEYnrtkEBERDQWiKOKbkzUAgNT4ICjlfH+fiDwXfwISSWTniWpYOmyID/HBGM7tp35KGxkMAMg704i2dqvEaYiIiDzb6RoTyhtboZQLSBvFxcKJyLOx4EQkke2HKgEA8yfqIHBuP/XTqFAfhPmpYbHakHumQeo4REREHm33SftyCdNig+Cr5mQSIvJsLDgRScBk7sCuAnuH5IZJERKnoaFMEASkjbKPcsouqoNNFCVORERE5JnK6ltQVGOCTACuTOToJiIiFpyIJLCroBrmDhtigrwxIdJf6jg0xE2JDoRGKUO9yYKT+iap4xAREXmk3Z1rNyVHByDAWyVxGiIi6bHgRCSBzw/rAdhHN3E6HV0ulUKG6bFBAOyjnIiIiGhwVRnbcLzSCAHAVYmhUschInILLDgRDbJWixU7Tzim0+kkTkPDxcyRwRAAnKpuRmE1RzkRERENJsfOdOMi/BHmr5E4DRGRe2DBiWiQ7ThehdZ2K6KDvDApSit1HBomAn1UGBdhn565cU+JtGGIiIg8SIPJgoNnGwEAV4/h6CYiIgcWnIgG2Sd5ZwEAC5OjOJ2OXMqxePjHueVobLFInIaIiMgzfFtYA5sIJIT6YkSgt9RxiIjcBgtORIOopsmMb07VAgAWTomSOA0NNyNDfBCh1aC13Yr3ckqljkNERDTsNbW1Y39JAwBgDkc3ERF1wYIT0SD678EKWG0ikkZoMSrUV+o4NMwIgoDZCfZtmDfuKYG5wypxIiIiouHtm5M16LCJiA70wsgQH6njEBG5FRaciAbRJ/nlAIBbObqJBsjkEQHQ+WtQ02TGfw5USB2HiIho2DK2tSOnuB4AkD4unEslEBH9CAtORIOksLoJh8sNUMgE3JQUKXUcGqbkMgG/mB0HAHjjmyKIoihtICIiomHq687RTTFB3kgI48h1IqIfY8GJaJB8mGtfLHzO6FAE+6olTkPD2Z0zYuCrVuBUdTOyjldLHYeIiGjYqTK2YV/n6KbrxoVxdBMRUTdYcCIaBJYOGz7aby84/XR6tMRpaLjz1yjx85mxAIBXdxVylBMREZGLvbb7NDpsImKDvJHAdTmJiLrFghPRIPjymB51Jgv8NApUG83YlFPa443IFe6bHQ+1QoYDZY3IPl0ndRwiclPr169HXFwcNBoNUlNTsXfv3h7bvvHGG7jyyisRGBiIwMBApKenX7Q90XClN7Rh0157n+06rt1ERNQjFpyIBoGjkDQtNhByGTslNPBC/dS4s3M03frdhRKnISJ39MEHH2DFihVYvXo18vLykJSUhIyMDFRXdz8Vd/fu3bjrrruwa9cuZGdnIzo6GnPnzkV5efkgJyeS1t93F8LSYUNcsDdGhXJnOiKiniikDkA03BXXmrDndB0EANPigqSOQx5k2VUj8V5OKb4vrENeaQOmxgRKHYmI3MjatWuxbNkyLF26FACwYcMGfPbZZ3jrrbfwxBNPXND+vffe6/L1P//5T3z88cfIysrC4sWLByUz0WC42IhzQ2s73svh6CYiot7gCCeiAba5c8h1YrgvAr1VEqchTzIi0Bu3TokCAPx1x0mJ0xCRO7FYLMjNzUV6errzmEwmQ3p6OrKzs3v1GC0tLWhvb0dQUM9vppjNZhiNxi43oqFsV0E1rDYRccE+GBnC0U1ERBfDghPRAGqxdGDzvjIAQGp8sMRpyBP9v+sSoZAJ+PZULfaV1Esdh4jcRG1tLaxWK8LDw7scDw8Ph16v79Vj/O53v0NkZGSXotWPrVmzBlqt1nmLjubGGTR01TaZsb/zd+n14zm6iYjoUlhwIhpAH+eehaG1HbHB3hij85M6Dnmg6CBv/GSa/Q+8l74skDgNEQ0Xf/7zn7F582Z88skn0Gg0PbZbuXIlDAaD81ZWVjaIKYlc68vjVbCJwFidH+I5uomI6JJYcCIaIDabiLe+LwEALJ0VBxnfBSOJPHRtAlRyGX4oqseewlqp4xCRGwgJCYFcLkdVVVWX41VVVdDpdBc998UXX8Sf//xnfPnll5g8efJF26rVavj7+3e5EQ1FZfUtOFJugABg7viL/zdCRER2LDgRDZCdJ6pRXGuCn0bhHGFCJIXIAC/cNcP+Gnw+8wREUZQ4ERFJTaVSISUlBVlZWc5jNpsNWVlZSEtL6/G8v/zlL3j22WeRmZmJadOmDUZUIsmJoogvjtqnmk6JCYBO2/OoPiIiOoe71BENkDe/KwYA3D0jBj5q/qdGg6e73XUiA7ygUshw8KwBK7ccxp9vv/ioBCIa/lasWIElS5Zg2rRpmDFjBtatWweTyeTctW7x4sWIiorCmjVrAADPP/88Vq1ahU2bNiEuLs651pOvry98fX0lex5EA+1UdTOKak2QywRcNy780icQEREAjnAiGhB5pQ3ILqqDQiZg8aw4qeMQwU+jxFWJIQCAL47qYe6wSpyIiKS2aNEivPjii1i1ahWSk5Nx4MABZGZmOhcSLy0tRWVlpbP9a6+9BovFgjvuuAMRERHO24svvijVUyAacLbzRjeljQzmjsNERH3AYRdEA+DVnYUAgFunRCEqwEviNER2sxNCkVNcj4aWdvwr+wx+eeVIqSMRkcSWL1+O5cuXd3vf7t27u3xdUlIy8IGI3Myhs42oNLRBrZDh6tGhUschIhpSOMKJyMWOlBuw80Q1ZALw62sSpI5D5KRSyJDeORXglaxTqGs2S5yIiIjIfXVYbdhxzL6w/pzRofDmEglERH3CghORizlGN92UFMktc8ntpMQGIkKrgbGtAy9+WSB1HCIiIrf1fWEtGlra4adRYNaoEKnjEBENOSw4EbnQ8UojMjvn+S/n6CZyQzJBwM1JkQCAzfvKcLCsUdpAREREbsjY2o5dBTUAgHkTdFAp+GcTEVFfucVPzvXr1yMuLg4ajQapqanYu3fvRdt/+OGHGDt2LDQaDSZNmoTt27d3uV8URaxatQoRERHw8vJCeno6Tp065by/pKQE9913H+Lj4+Hl5YVRo0Zh9erVsFgsA/L8yHO8+IV9xMiCyRFIDPeTOA1R92KDfXDrlCiIIrDq06Ow2USpIxEREbmVL47qYbHaEB3ohaToAKnjEBENSZIXnD744AOsWLECq1evRl5eHpKSkpCRkYHq6upu2+/Zswd33XUX7rvvPuTn52PhwoVYuHAhjhw54mzzl7/8Ba+88go2bNiAnJwc+Pj4ICMjA21tbQCAEydOwGaz4R//+AeOHj2Kv/71r9iwYQOefPLJQXnONDztL6lH1olqyGUCfnv9aKnjEF3Uyvlj4atW4GBZI97LOSN1HCIiIrdRWt+C/M4RwDclRUImCNIGIiIaogRRFCV9azs1NRXTp0/Hq6++CgCw2WyIjo7GQw89hCeeeOKC9osWLYLJZMK2bducx2bOnInk5GRs2LABoigiMjISv/3tb/Hoo48CAAwGA8LDw7Fx40bceeed3eZ44YUX8Nprr6GoqKhXuY1GI7RaLQwGA/z9/fv6tGmYEUURP/1HNvaVNOCuGdFYc9vkC9psyimVIBlR9+5OjcE7e0qw+tOj8FUrsGPFVYjQckdFGp74O9t98N+C3J3NJuKqF3bhbEMrUmICcXvKCKkjEdEQcHdqjNQRXM4Vv7MlHeFksViQm5uL9PR05zGZTIb09HRkZ2d3e052dnaX9gCQkZHhbF9cXAy9Xt+ljVarRWpqao+PCdiLUkFBQT3ebzabYTQau9yIHHYVVGNfSQPUChn+33WJUsch6pWfz4zF1JgANJs78PTWI5D4/QciIiLJfZx3FmcbWqFWyDB3QrjUcYiIhjRJ9/asra2F1WpFeHjXH+bh4eE4ceJEt+fo9fpu2+v1euf9jmM9tfmxwsJC/O1vf8OLL77YY9Y1a9bgD3/4w8WfEHmkdqsNv/voMABgRnwQdp2okTgRUe/IZQL+fPtkLHjlW3x1vBr/PVTpXFCciIjI0zS1teP5TPt6nNeMCYOfRilxIiKioU3yNZykVl5ejnnz5uEnP/kJli1b1mO7lStXwmAwOG9lZWWDmJLc2Xs/nEFNsxk+KjmuGRMmdRyiPhkd7ocHO3dUfHrrEegNbRInIiIiksbLX51CbbMZwT4qzEoIljoOEdGQJ2nBKSQkBHK5HFVVVV2OV1VVQafTdXuOTqe7aHvHx948ZkVFBa655hrMmjULr7/++kWzqtVq+Pv7d7kRNbZY8Nev7Dsgpo8Ph0YplzgRUd89eE0CJkVpYWhtx+MfH+LUOiIi8jiHzjbire+LAQA3To6EQubx78sTEV02SX+SqlQqpKSkICsry3nMZrMhKysLaWlp3Z6TlpbWpT0A7Nixw9k+Pj4eOp2uSxuj0YicnJwuj1leXo6rr74aKSkpePvttyHjLxXqh7/uOAlDazt0/hpMi+15DTAid6aUy/DXRUlQKWT45mQN/v0Dd60jIiLP0W614XcfH4ZNBG5JjsQYnZ/UkYiIhgVJ13ACgBUrVmDJkiWYNm0aZsyYgXXr1sFkMmHp0qUAgMWLFyMqKgpr1qwBADz88MOYM2cOXnrpJSxYsACbN2/G/v37nSOUBEHAI488gueeew6JiYmIj4/H008/jcjISCxcuBDAuWJTbGwsXnzxRdTUnFtzp6eRVUQ/dqTcgH91/mF+w6QIyGXcMpeGroQwPzwxbyz+uO0Ynv3sOKbFBWFcBEdyEhHR8NHTjsG7C6pxvNIIb5UcEyK1g5yKiGj4krzgtGjRItTU1GDVqlXQ6/VITk5GZmamc9Hv0tLSLqOPZs2ahU2bNuGpp57Ck08+icTERGzduhUTJ050tnn88cdhMplw//33o7GxEbNnz0ZmZiY0Gg0A+4iowsJCFBYWYsSIrludcioJ9YbNJuLp/xyBTQRunByBhDBfqSMRXbZ7Z8Xhu8Ja7DxRjQc35eG/y2fDRy35rwkiIqIBU9tkxs4T1QCABZMi4Mvfe0RELiOIrLD0i9FohFarhcFg4HpOHuiDfaX43ceH4aOSI+u3Vzs7KkRDxd2pMd0erzdZcMPL30JvbMOtU6Kw9qdJEASO3qOhjb+z3Qf/LUhKPx7hZBNFvPldMYprTUgM88W9s+L4O4+I+qWnvvVQ5orf2SzhE/VRbbMZaz4/AQD4zfWjodNqJE5E1Hc9TSsAgJuSIvHPb4vwSX45psQEYHFa3OAFIyIiGiS5JQ0orjVBKRewMDmKxSYiIhdjwYnoIrr7o3zzvlI0trQjQquBWiG/6B/uRENRfIgP5k3U4fMjevzxv8cwVuePGfFcFJ+IiIaPxhYLPj9aCQCYO16HQB+VxImIiIYfbs1G1AfHK404dNYAmQDcNnUEFwqnYWt2Qggmj9Ciwybi1+/lobyxVepIRERELmETRXyUexZt7TZEB3ohbVSw1JGIiIYlFpyIeqmt3Yr/HCgHYP9jPCrAS+JERANHEATcNmUExur8UNtsxn0b96GprV3qWERERJft+8JaFHVOpfvJtGjIOJWOiGhAsOBE1EuZR/QwtnUg2EeF68aFSx2HaMCpFDK8ee90hPiqcULfhIfez0eH1SZ1LCIion6rNLTiy2NVAIAFkyIR4quWOBER0fDFghNRLxTVNmNvST0A4NapUVDK+Z8OeYaoAC+8uWQaNEoZdhfU4KmtR8DNTYmIaCgyt1vx/t5SWG0ixur8MD0uUOpIRETDGhcNJ7qEdqsNn+TZp9LNiAvCyBBfiRMRDR7Hovh3TB2B93JKsXlfGfSGNsydoHO2GY7bwBIR0fAiiiI+OVCO2mYLtF5K3DF1BHelIyIaYBymQXQJXx7Vo85kgb9GgXkTdZc+gWgYGh+pxcLkKADA7pM1+PZUjcSJiIiIem/T3lLnxi93To+Gt5rvuxMRDTQWnIgu4nRNM74/XQcAuHVKFDRKucSJiKQzPT4Ic8fb1y/7/Igee07XSpyIiIjo0vaX1OOZT48CAOaO1yE22EfiREREnoEFJ6IeGFrb8VHuWQD2qXRjdP4SJyKS3pzRobh6TCgAYNuhSmSz6ERERG5Mb2jDA//OQ7tVxMRIf1yZGCJ1JCIij8GCE1EPnvn0KAyt7Qj2UWH+JE6lIwIAQRBw/bhwXJVoLzr991Al1u8q5ELiRETkdlosHbj/X/tR22zGWJ0fbk/huk1ERIOJk5eJuvHZoUp8kl8OAcBPpkVDreBUOiIHQRCQMSEcchmwq6AGL3xRgMYWC1bOHweZjB15IiIafI5NLhxsooh//3AGJ/RN8FbJcePkSPbniIgGGUc4Ef1IlbENv996GABw9ZhQxAR5S5yIyP0IgoDrx+twQ+dC+m98W4zl7+ehrd0qcTIiIvJ0oihi26EKnNA3QSETcM/MWAT5qKSORUTkcVhwIjqPzSbisY8OobGlHROj/HHt2HCpIxG5tdmJoVj70yQo5QK2H9Zj0es/oMrYJnUsIiLyYFknqvFDUb1zpDoXCScikgYLTkTnee3r0/jmZA3UChn++tNkyDk9iOiSbps6Av++LxUB3kocLGvEgle+xZ5CLiZORESD79tTNdh5ohoAsGByBCZFaSVORETkuVhwIuqUfboOL31ZAAD44y0TkBjuJ3EioqEjdWQwtv76CozV+aG22YKfv5mDv+44iXarTepoRETkIfacrsXnR/QAgLnjwzFrFHekIyKSEgtORACqm9rw0Pv5sInA7VNH4KfToqWORDTkxIX44JNfX4E7UkbAJgIvZ53CHa/twemaZqmjERHRMPfNyRpsO1QJAJgzOhRzRodKnIiIiFhwIo9ntYn4f+/no7bZjDHhfnhu4URumUvUT14qOV64YzJevjMZ/hoFDp41YP66b7Huq5NcUJyIiFxOFEW89GUBMo/aRzZdOzYMc8eHsy9HROQGFFIHIJKKY/vcL4/p8UNRPVQKGW6YFIFP8sslTkY0tAmCgFuSozAjPghPfHwYX5+swbqvTmFrfjkezRiDGyZGQMb10YiI6DK1W2144uPD+DjvLAD7NLqrx4RJnIqIiBxYcCKPdqLSiN0FNQCA26ZEIdRPLXEioqHHUbztztzx4YjQavDZoUqU1LVg+aZ8TIoqwu/mjcXsRK6tQURE/dNgsmD5+3n4vrAOcpmAW5IiMS0uSOpYRER0HhacyGNVGlqxeX8ZACA1PgiTRwRIG4hoGBIEAZNHBGBMuB8Mbe1445siHC434Odv5uCKhGA8fN1oTI8L5NQHIiLqtRN6I5a9ux9l9a3wVsmx/u6pqDS0SR2LiIh+hAUn8kjVxja8m30Glg4bRob64MbJkVJHIhrW1Eo5Hpkdj5/PjMX6XYV474dSfF9Yh+8LszF5hBa/vHIk5k/UQSnn0oJERHTO+aNoRVFEXmkDPj1YgXariEBvJe6ZGcdiExGRm2LBiTyOoaUdS97eB0NrO0J81fjZjFjIuZ4M0YBz/NGQGOaHh69LxO6TNcgvbcChswb8v/fzofVSIm1kMJ67dSJCfDm9lYiIzmlrt+LTgxU4UNYIAEgM88Wi6dHwVvHPGSIid8Wf0ORRTOYOLN24F8crjfBVK7AkLRZeKrnUsYg8TqCPCrdOicL148Oxt7gO2UX1MLS2I/OoHl8dr8J148KwaHo0rkoMhYKjnoiIPNrJqiZ8kl8OQ2s7ZAKQPi4cV40OhYzTsYmI3BoLTuQxTOYO/PKd/cgrbYTWS4nFabEI5igKIkn5qhW4dmw4rkwMxcGyRuwrqUdZQyu+OFqFL45WQeevwS3JkbgpKRITIv251hMRkQepazbjo9wy5JU2AgCCfVS4I2UEYoN9pA1GRES9woITeYQGkwX3btyHg2WN8FHJsXHpdByvbJI6FhF1UsplmBYXhGlxQUiJDcQH+8rwSf5Z6I1t+Mc3RfjHN0UYGeKDG5MicXNSJBLCfKWOTEREA6TdasPmvaV48cuTMLS2AwDSRgUjY7wOKgVHvRIRDRUsONGwV1rXgvve2YdT1c0I9Fbi7aUzkBwdwIITkZsao/PDqpvG43fzx2DXiWp8erACWcerUVRrwitZp/BK1ilEaDWYHKXFhCjtRdd7ujs1ZhCTExHR5bDZRGw7XImXvizAmboWAECEVoNbkqMQE+QtcToiIuorFpxoWNtVUI2H38+Hsa0DOn8N/v3LGUgI85M6FhFdxPk7EgHA7IRQTI8NwnG9EQfLDDhV3YRKQxsqDW344lgVwv3VmBCpxYRIf+j8NZx2R0Q0RDh+3ouiiMLqZnxxVI+Kzh3nfNQKXDs2DDPigri5CxHREMWCEw1LrRYrXvqyAG9+XwxRBKbEBOC1n6VAp9VIHY2I+kGtlCM5OhDJ0YFosXTgaIURh88aUFTbjCqjGVXGauw8UY0gHxXGR/hjQqQ/ovluOBGRW7PaRBwub8R3hbWoaLQXmtQKGa5MDMEVCSFQK7ixCxHRUMaCEw0roihid0ENVn96FKX19qHYP58Zg1U3TuCcf6JhwlulwPS4IEyPC0KLpQMn9E04VmHEyaom1Jss+K6wFt8V1sJPo8DxSiOuHhOGtFHB8FXzVx4RkTtobLHg/b1leG13IYxtHQAApVzAjLggXD0mDD78eU1ENCzwpzkNC6Io4oeievx1x0nsLakHYJ/z/6dbJ+GasWESpyOigeKtUmBqTCCmxgTC0mHDyaomHK0w4IS+CU1tHXgvpxTv5ZRCIRMwNSYQV40OQdqoYEyI1EKj5DvnRESDpd1qw9cFNfg47yyyjlfDYrUBAPzUCswcFYwZcUEsNBERDTP8qU5DWr3Jgu2HK/HvH87ghN6+CLhKIcOStFj8v+sS4adRSpyQiAaLSiHDxCgtJkZp0WG1oajWhA6bDd+eqsWZuhbsLal3FqQVMgHjIvwxJSYASSMCMEbnh4QwXxahiIhcwLE2k9UmoqTOhGMVRhw62wiTxepsE6HV4IpRIZg8QguFnKPQiYiGIxacaEgRRREnq5rx7akafH2yBntO18FqEwEAGqUMt08dgeXXJiBC6yVxUiKSkkIuw+hwP+cudWfqTPj2VC2+PVWD3DONqG0243C5AYfLDQDOAAAEAYgJ8kZimB9GhfkgPtgHcSE+iA/xQZifmouRExH1Ql2zGQfKGnC8sgmnqpvQ1m5z3uerViA5OgBTYgLYVyMi8gAsOJHbEkURFYY2HD5rwKGzjTjU+dEx199hQqQ/bp0ShZ+kREPrzRFNRHSh2GAfxAb74OczYyGKIsobW5Ff2ogDZY04fNaAk9VNaGxpx5m6Fpypa8FXx7ue762SQ+ulRLCPCsG+aoT4qhDso0awrwq+akWXYpSjyEVENNzZbCLO1Ldgf0k99pc0YN+ZehTVmLq08VbJMVbnh0lRWiSE+XHHOSIiD+IWBaf169fjhRdegF6vR1JSEv72t79hxowZPbb/8MMP8fTTT6OkpASJiYl4/vnnccMNNzjvF0URq1evxhtvvIHGxkZcccUVeO2115CYmOhsU19fj4ceegj//e9/IZPJcPvtt+Pll1+Gr6/vgD5XulBbuxVn6lpwuqYZp6ubcbqmGYU1zSiqMaHlvKHXDhqlDDPigzE7IRhzx+sQF+IjQWoiGqoEQcCIQG+MCPTGTUmRAOy/N2qbLThV3YRTVc0orjWhuNaEkjoTzja0osViRYvFisrO7brPp1bInIWoYF8VVAoZ4kO8ERfsgyAfFUdGkVtzdR+Mhqe2divKG1txtqEVp6ubUaBvwomqJpyqauq2r6bz12CMzg/jdH4YEeQNGX8OEhF5JEEURVHKAB988AEWL16MDRs2IDU1FevWrcOHH36IgoIChIVduNjznj17cNVVV2HNmjW48cYbsWnTJjz//PPIy8vDxIkTAQDPP/881qxZg3feeQfx8fF4+umncfjwYRw7dgwajQYAMH/+fFRWVuIf//gH2tvbsXTpUkyfPh2bNm3qVW6j0QitVguDwQB/f3/XXZBhpK3dioYWCxpb2tHY0o7aZjMqDa2oaGxDRWMrKjo/rzdZenwMhUxAYrgfkkZo0dZuw4hAL4T7a/juGBENmg6bDY2mdtSazKhrtqC22Yw6kwV1zWY0trTjYr9E/TQKxIf4IDrQG8G+KgR6q5wffdRyaBRyqJVyaJQyqOQynPubzP6J4+vzf+LZZxGLEEX756Lzc/tHexv75yLOP37eOaLovA+d7VQKGbyUcnip5PaPnZ+rFbIhXzTj7+zuDUQf7FL4byE9S4cNzeYONLd1wNjW7vy8yWzvrzl+ztU2W1DTbEZFYytqmsw9Pp5CJiAqwAuxwT6IC/ZGTLA3vFVu8Z42EdGgGY4j3F3xO1vyglNqaiqmT5+OV199FQBgs9kQHR2Nhx56CE888cQF7RctWgSTyYRt27Y5j82cORPJycnYsGEDRFFEZGQkfvvb3+LRRx8FABgMBoSHh2Pjxo248847cfz4cYwfPx779u3DtGnTAACZmZm44YYbcPbsWURGRl4y90B1mL4+WYPmtg7YRPHczQZYRRGiKMIm2hdgPP9zxx8T7TYbOqwiOmwiOqw2dNhEtFsdx87dd/6x9h/d12G1obrJ7HxcW+cfMY4/NRx/dGi9lPZjgv0PIRGAud0Gc4cN5nYr2jqsaLf2/qWlUcoQ6qtGqJ8GoX7qzs/VCPJRsbhERG6rw2pDvcmCOlNnIarZAoVcQEmtCRXdjIYaigQBXQpQjo8aZdfClPNrlb1wpZTLIJcJkAmC/aNMgFwQIBPg/NxxXCYAAgTnOloTo7QufQ4scnTP1X2w3hiIfwurTcSOY3pnkRVA5+fnirAi7IVW9HS/2LWN6Py/c+0u9tjoLOI67//R1+f6dRf240RRhPW8PpfNduHnzn5gZ5/wx+06rCLMHVZ7P6zDBnOHFRbH5+22Lvc51r7sKx+VHH4aJYJ8VAj3VyPcXwOdvwbBvmr21YjI47Hg1D1J336wWCzIzc3FypUrncdkMhnS09ORnZ3d7TnZ2dlYsWJFl2MZGRnYunUrAKC4uBh6vR7p6enO+7VaLVJTU5GdnY0777wT2dnZCAgIcBabACA9PR0ymQw5OTm49dZbL/i+ZrMZZvO5d3cMBgMA+z+CKz31f3txpq7FpY85EGp72U4mABqVHN6df5BoNUpovZX2j15K+HvZP6qV3b2DboG5tefRT0RE7sBXDvj6C4j11wDQ4KfTogHYR3mW1begpK4FekMrGlvaUd9iQWOLBQX65s7iv83+0WYv+p9PBKCSC11HUIn2ApCAziKNIEAAYLbaIOD8EVFClzcFHD9fz7UROh+ns70AdFhFtNtsECCgtd2ey6G5DWh26VXr2Z3To/HUjeNd+piO39USv8fmVgaiD9adweg/tbVbcf+b37ns8TyFUi5ArZRBLZdDrZQ5R1z6quXwUcvhrVLAV62AVqNCgLcCGpW8m75aO8yt7ZLkJyJyJ66uC7gDV/SfJC041dbWwmq1Ijw8vMvx8PBwnDhxottz9Hp9t+31er3zfsexi7X58VBxhUKBoKAgZ5sfW7NmDf7whz9ccDw6Orqnp0dERB5omdQBhrgXOm8DoampCVqta0dPDVUD0QfrDvtPRETkCYZz/+9y+k+cYN1LK1eu7PKuns1mQ319PYKDgwdlbQuj0Yjo6GiUlZV57HQAXgM7Xgc7XgdeAwdeB14Dh56ugyiKaGpq6tWUeXIt9p+kx2tgx+vAa+DA62DH68Br4DCQ/SdJC04hISGQy+Woqqrqcryqqgo6na7bc3Q63UXbOz5WVVUhIiKiS5vk5GRnm+rq6i6P0dHRgfr6+h6/r1qthlqt7nIsICDg4k9wAPj7+3v0fwwAr4EDr4MdrwOvgQOvA6+BQ3fXgSObuhqIPlh32H9yH7wGdrwOvAYOvA52vA68Bg4D0X+SXdbZl0mlUiElJQVZWVnOYzabDVlZWUhLS+v2nLS0tC7tAWDHjh3O9vHx8dDpdF3aGI1G5OTkONukpaWhsbERubm5zjY7d+6EzWZDamqqy54fERERkTsaiD4YERER0fkkn1K3YsUKLFmyBNOmTcOMGTOwbt06mEwmLF26FACwePFiREVFYc2aNQCAhx9+GHPmzMFLL72EBQsWYPPmzdi/fz9ef/11APaFUR955BE899xzSExMRHx8PJ5++mlERkZi4cKFAIBx48Zh3rx5WLZsGTZs2ID29nYsX74cd955J4fbExERkUdwdR+MiIiI6HySF5wWLVqEmpoarFq1Cnq9HsnJycjMzHQuSllaWgqZ7NxArFmzZmHTpk146qmn8OSTTyIxMRFbt27FxIkTnW0ef/xxmEwm3H///WhsbMTs2bORmZkJjUbjbPPee+9h+fLluO666yCTyXD77bfjlVdeGbwn3kdqtRqrV6++YFi6J+E1sON1sON14DVw4HXgNXDgdeibgeiDuRu+JngNHHgdeA0ceB3seB14DRwG8joIIvcIJiIiIiIiIiIiF5J0DSciIiIiIiIiIhp+WHAiIiIiIiIiIiKXYsGJiIiIiIiIiIhcigUnIiIiIiIiIiJyKRacJPTNN9/gpptuQmRkJARBwNatW7vcf++990IQhC63efPmdWlTX1+Pn/3sZ/D390dAQADuu+8+NDc3D+KzuDxr1qzB9OnT4efnh7CwMCxcuBAFBQVd2rS1teHBBx9EcHAwfH19cfvtt6OqqqpLm9LSUixYsADe3t4ICwvDY489ho6OjsF8KpelN9fh6quvvuD18MADD3RpM9Svw2uvvYbJkyfD398f/v7+SEtLw+eff+683xNeC5e6Bp7wOvixP//5zxAEAY888ojzmCe8Fn6su+vgCa+HZ5555oLnOHbsWOf9nvha8HTsP7H/5MD+E/tODuw/XYj9Jzv2nyTuP4kkme3bt4u///3vxS1btogAxE8++aTL/UuWLBHnzZsnVlZWOm/19fVd2sybN09MSkoSf/jhB/Hbb78VExISxLvuumsQn8XlycjIEN9++23xyJEj4oEDB8QbbrhBjImJEZubm51tHnjgATE6OlrMysoS9+/fL86cOVOcNWuW8/6Ojg5x4sSJYnp6upifny9u375dDAkJEVeuXCnFU+qX3lyHOXPmiMuWLevyejAYDM77h8N1+PTTT8XPPvtMPHnypFhQUCA++eSTolKpFI8cOSKKome8Fi51DTzhdXC+vXv3inFxceLkyZPFhx9+2HncE14L5+vpOnjC62H16tXihAkTujzHmpoa5/2e9log9p9Ekf0nB/af2HdyYP+pK/af7Nh/kr7/xIKTm+ipw3TLLbf0eM6xY8dEAOK+ffucxz7//HNREASxvLx8gJIOrOrqahGA+PXXX4uiKIqNjY2iUqkUP/zwQ2eb48ePiwDE7OxsURTtHU+ZTCbq9Xpnm9dee0309/cXzWbz4D4BF/nxdRBF+w/G839Q/thwvA6iKIqBgYHiP//5T499LYjiuWsgip71OmhqahITExPFHTt2dHnenvZa6Ok6iKJnvB5Wr14tJiUldXufp70W6ELsP9mx/2TH/pMd+0527D+x/8T+U1K39w3ma4FT6tzc7t27ERYWhjFjxuBXv/oV6urqnPdlZ2cjICAA06ZNcx5LT0+HTCZDTk6OFHEvm8FgAAAEBQUBAHJzc9He3o709HRnm7FjxyImJgbZ2dkA7Ndh0qRJCA8Pd7bJyMiA0WjE0aNHBzG96/z4Oji89957CAkJwcSJE7Fy5Uq0tLQ47xtu18FqtWLz5s0wmUxIS0vzyNfCj6+Bg6e8Dh588EEsWLCgy7854Hk/F3q6Dg6e8Ho4deoUIiMjMXLkSPzsZz9DaWkpAM97LVDvsf/kmf9teHr/iX0nO/af2H8C2H8C3KP/pHDRc6EBMG/ePNx2222Ij4/H6dOn8eSTT2L+/PnIzs6GXC6HXq9HWFhYl3MUCgWCgoKg1+slSt1/NpsNjzzyCK644gpMnDgRAKDX66FSqRAQENClbXh4uPM56vX6Lv8hOO533DfUdHcdAODuu+9GbGwsIiMjcejQIfzud79DQUEBtmzZAmD4XIfDhw8jLS0NbW1t8PX1xSeffILx48fjwIEDHvNa6OkaAJ7zOti8eTPy8vKwb9++C+7zpJ8LF7sOgGe8HlJTU7Fx40aMGTMGlZWV+MMf/oArr7wSR44c8ajXAvUe+0+e9XPSwZP7T+w72bH/xP6TA/tP7tN/YsHJjd15553OzydNmoTJkydj1KhR2L17N6677joJkw2MBx98EEeOHMF3330ndRRJ9XQd7r//fufnkyZNQkREBK677jqcPn0ao0aNGuyYA2bMmDE4cOAADAYDPvroIyxZsgRff/211LEGVU/XYPz48R7xOigrK8PDDz+MHTt2QKPRSB1HMr25Dp7wepg/f77z88mTJyM1NRWxsbH4v//7P3h5eUmYjNwV+0+eyZP7T+w72bH/xP4TwP6Tg7v0nzilbggZOXIkQkJCUFhYCADQ6XSorq7u0qajowP19fXQ6XRSROy35cuXY9u2bdi1axdGjBjhPK7T6WCxWNDY2NilfVVVlfM56nS6C1bUd3w9XK5Dd1JTUwGgy+thOFwHlUqFhIQEpKSkYM2aNUhKSsLLL7/sUa+Fnq5Bd4bj6yA3NxfV1dWYOnUqFAoFFAoFvv76a7zyyitQKBQIDw/3iNfCpa6D1Wq94Jzh+Hr4sYCAAIwePRqFhYUe9XOB+o/9p3OG638bnt5/Yt/Jjv0n9p8A9p96IlX/iQWnIeTs2bOoq6tDREQEACAtLQ2NjY3Izc11ttm5cydsNpvzPxp3J4oili9fjk8++QQ7d+5EfHx8l/tTUlKgVCqRlZXlPFZQUIDS0lLnnOy0tDQcPny4S+dxx44d8Pf3dw6jdXeXug7dOXDgAAB0eT0M9evQHZvNBrPZ7DGvhe44rkF3huPr4LrrrsPhw4dx4MAB523atGn42c9+5vzcE14Ll7oOcrn8gnOG4+vhx5qbm3H69GlERER49M8F6j32n+yG438b7D91j30nO/af2H9i/+kcyfpPfV/vnFylqalJzM/PF/Pz80UA4tq1a8X8/HzxzJkzYlNTk/joo4+K2dnZYnFxsfjVV1+JU6dOFRMTE8W2tjbnY8ybN0+cMmWKmJOTI3733XdiYmLikNrW91e/+pWo1WrF3bt3d9mysaWlxdnmgQceEGNiYsSdO3eK+/fvF9PS0sS0tDTn/Y4tG+fOnSseOHBAzMzMFENDQ4fUtpWXug6FhYXiH//4R3H//v1icXGx+J///EccOXKkeNVVVzkfYzhchyeeeEL8+uuvxeLiYvHQoUPiE088IQqCIH755ZeiKHrGa+Fi18BTXgfd+fFuIp7wWujO+dfBU14Pv/3tb8Xdu3eLxcXF4vfffy+mp6eLISEhYnV1tSiKnvta8GTsP7H/5MD+E/tODuw/dY/9Jzv2n6TrP7HgJKFdu3aJAC64LVmyRGxpaRHnzp0rhoaGikqlUoyNjRWXLVvWZVtCURTFuro68a677hJ9fX1Ff39/cenSpWJTU5NEz6jvunv+AMS3337b2aa1tVX89a9/LQYGBore3t7irbfeKlZWVnZ5nJKSEnH+/Pmil5eXGBISIv72t78V29vbB/nZ9N+lrkNpaal41VVXiUFBQaJarRYTEhLExx57TDQYDF0eZ6hfh1/84hdibGysqFKpxNDQUPG6665zdphE0TNeCxe7Bp7yOujOjztMnvBa6M7518FTXg+LFi0SIyIiRJVKJUZFRYmLFi0SCwsLnfd76mvBk7H/xP6TA/tP7Ds5sP/UPfaf7Nh/kq7/JIiiKPZ+PBQREREREREREdHFcQ0nIiIiIiIiIiJyKRaciIiIiIiIiIjIpVhwIiIiIiIiIiIil2LBiYiIiIiIiIiIXIoFJyIiIiIiIiIicikWnIiIiIiIiIiIyKVYcCIiIiIiIiIiIpdiwYmIiIiIiIguauPGjQgICBiU7yUIArZu3Too34uIBg4LTkQ07H3zzTe46aabEBkZ2W0HRhCEbm8vvPCCs01eXh6uv/56BAQEIDg4GPfffz+am5sH+ZkQERGRp6upqcGvfvUrxMTEQK1WQ6fTISMjA99//72zjbsUbK6++mpnv0qj0WD8+PH4+9//fsnzKisrMX/+/EFISEQDiQUnIhr2TCYTkpKSsH79+m7vr6ys7HJ76623IAgCbr/9dgBARUUF0tPTkZCQgJycHGRmZuLo0aO49957B/FZEBEREQG333478vPz8c477+DkyZP49NNPcfXVV6Ourk7qaN1atmwZKisrcezYMfz0pz/Fgw8+iPfff7/bthaLBQCg0+mgVqsHMyYRDQAWnIho2Js/fz6ee+453Hrrrd3er9Pputz+85//4JprrsHIkSMBANu2bYNSqcT69esxZswYTJ8+HRs2bMDHH3+MwsLCwXwqRERE5MEaGxvx7bff4vnnn8c111yD2NhYzJgxAytXrsTNN98MAIiLiwMA3HrrrRAEwfk1ALz22msYNWoUVCoVxowZg3/9618XPP7//M//IDw8HBqNBhMnTsS2bdu6zVJTU4Np06bh1ltvhdls7jGzt7c3dDodRo4ciWeeeQaJiYn49NNPAdhHQC1fvhyPPPIIQkJCkJGRAeDCEVpn/3979xYSVbvHcfynlQcayYTU0s4WpDkxY5IlaoqSRZBpRVNQFhnYRZKgeKNlRYl5yJDIwGzoYBGdzG7UQLCiUmqsyCzCi1IqsYvSIih9L3r32rmzkv2OtWl/P7AuZq3nWfOfuZr5rf961osXstls8vHx0dixYzV//nzdvn3bOH758mVZrVZ5eHhoxowZys/P16dPn4b9vQIYGaN/dwEA8L/k1atXunr1qux2u7Hv48ePcnNzk6vrvzN6T09PSdL169cVFBT0y+sEAAD/f0wmk0wmky5duqSIiIghu4Cam5vl6+urqqoqJSYmatSoUZKkixcvKiMjQwcPHlR8fLxqa2u1adMmBQYGKjY2Vv39/Vq6dKnevXunkydPaubMmXr06JEx/2vPnz9XQkKCIiIiVFlZOeSY7/H09DQ6mSTJbrcrPT190C2BX+vt7VVMTIwCAgJUU1Mjf39/3b17V/39/ZKkpqYmbdiwQYcOHVJUVJSePXumrVu3SpJ27tw57LoAOB+BEwB8xW63y8vLS8nJyca+uLg4ZWZm6sCBA8rIyFBfX59ycnIkfbkdDwAA4FcYPXq0jh8/rrS0NB05ckRWq1UxMTFau3atzGazJGnChAmSJG9vb/n7+xtzi4qKlJqaqm3btkmSMjMzdevWLRUVFSk2NlYNDQ26c+eO2traNHv2bEkyur2/1t7eroSEBK1cuVIHDx6Ui4vLsGr//Pmzqqurdf/+fSMQkqRZs2apsLDwu/NOnz6t7u5uNTc3y8fHR5IGXezLz89XTk6ONm7caNS8Z88eZWdnEzgBvxm31AHAV44dO6b169fLw8PD2BcSEiK73a7i4mKjLXz69Ony8/Mb1PUEAAAw0lJSUtTV1aWamholJiaqsbFRVqtVx48f/+G8trY2RUZGDtoXGRmptrY2SZLD4VBgYKARNg3lw4cPioqKUnJyssrKyoYVNh0+fFgmk0menp5KS0vTjh07lJ6ebhwPCwv74XyHwyGLxWKETf+ptbVVu3fvNrq/TCaTsW7U+/fvf1ofgJHDPyUA+FtTU5Pa29u1ZcuWb46tW7dOL1++VGdnp3p6erRr1y51d3cPeeUPAABgJHl4eCghIUG5ubm6efOmUlNT/3E3z7+WC/gRd3d343a8zs7OYZ13/fr1cjgc6ujoUF9fn0pKSgZdsBs7duw/qqu3t1f5+flyOBzG9uDBAz19+nTQBUQAvx6BEwD8rbKyUmFhYZo3b953x/j5+clkMuns2bPGjz0AAIDfKTg4WH19fcbrMWPG6PPnz4PGzJkz55t1km7cuKHg4GBJktls1osXL/TkyZPvvo+rq6tOnDihsLAwxcbGqqur66e1jRs3TkFBQQoICPivOsPNZrMcDofevHkz5HGr1ar29nYFBQV9s9GJDvxerOEE4I/X29s76GlyHR0dcjgc8vHx0ZQpUyRJb9++1blz51RcXDzkOcrLy7Vo0SKZTCbV19crKytLBQUF8vb2/hUfAQAAQD09PVq9erU2b94ss9ksLy8vtbS0qLCwUCtWrDDGTZs2TdeuXVNkZKTc3d01fvx4ZWVlac2aNbJYLIqPj9eVK1d04cIFNTQ0SJJiYmIUHR2tlJQUlZSUKCgoSI8fP5aLi4sSExONc48aNUqnTp2SzWZTXFycGhsbB60V5Ww2m0379u1TUlKS9u/fr4kTJ+revXuaNGmSFi5cqLy8PC1fvlxTpkzRqlWr5OrqqtbWVj18+FB79+4dsboA/ByRL4A/XktLiywWiywWi6Qvi2RaLBbl5eUZY86cOaOBgQHZbLYhz3Hnzh0lJCQoNDRUR48eVUVFhbZv3/5L6gcAAJC+PKVuwYIFKi0tVXR0tObOnavc3FylpaWpvLzcGFdcXKz6+npNnjzZ+P2TlJSksrIyFRUVKSQkRBUVFaqqqtLixYuNeefPn1d4eLhsNpuCg4OVnZ39TaeU9GXx8urqaoWEhCguLk6vX78esc/s5uamuro6+fr6atmyZQoNDVVBQYHxZLwlS5aotrZWdXV1Cg8PV0REhEpLSzV16tQRqwnA8LgMDAwM/O4iAAAAAAAA8OegwwkAAAAAAABOReAEAAAAAAAApyJwAgAAAAAAgFMROAEAAAAAAMCpCJwAAAAAAADgVAROAAAAAAAAcCoCJwAAAAAAADgVgRMAAAAAAACcisAJAAAAAAAATkXgBAAAAAAAAKcicAIAAAAAAIBTETgBAAAAAADAqf4CSnF28n6beRYAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1400x400 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"AMP\n",
"Days: 179\n",
"Expected Value: $295.29\n",
"Return: -28.36%\n",
"Probability of Breakeven: 0.021\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" <th>5</th>\n",
" <th>6</th>\n",
" <th>7</th>\n",
" <th>8</th>\n",
" <th>9</th>\n",
" <th>...</th>\n",
" <th>1990</th>\n",
" <th>1991</th>\n",
" <th>1992</th>\n",
" <th>1993</th>\n",
" <th>1994</th>\n",
" <th>1995</th>\n",
" <th>1996</th>\n",
" <th>1997</th>\n",
" <th>1998</th>\n",
" <th>1999</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>...</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" <td>379.030000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>379.352661</td>\n",
" <td>381.714966</td>\n",
" <td>383.375358</td>\n",
" <td>374.618161</td>\n",
" <td>379.056080</td>\n",
" <td>383.724965</td>\n",
" <td>379.268473</td>\n",
" <td>383.107347</td>\n",
" <td>375.761131</td>\n",
" <td>376.028392</td>\n",
" <td>...</td>\n",
" <td>378.794027</td>\n",
" <td>375.038490</td>\n",
" <td>375.485313</td>\n",
" <td>375.864464</td>\n",
" <td>382.186543</td>\n",
" <td>377.960955</td>\n",
" <td>378.357218</td>\n",
" <td>384.599065</td>\n",
" <td>377.076425</td>\n",
" <td>376.789847</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>383.591870</td>\n",
" <td>383.667919</td>\n",
" <td>387.326043</td>\n",
" <td>378.040984</td>\n",
" <td>383.788079</td>\n",
" <td>384.552494</td>\n",
" <td>380.759779</td>\n",
" <td>380.522154</td>\n",
" <td>375.154570</td>\n",
" <td>374.085927</td>\n",
" <td>...</td>\n",
" <td>387.705626</td>\n",
" <td>373.992699</td>\n",
" <td>376.977980</td>\n",
" <td>375.518888</td>\n",
" <td>382.730319</td>\n",
" <td>379.596358</td>\n",
" <td>375.710396</td>\n",
" <td>379.918507</td>\n",
" <td>375.128224</td>\n",
" <td>378.423115</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>386.108322</td>\n",
" <td>387.878792</td>\n",
" <td>384.256772</td>\n",
" <td>375.464701</td>\n",
" <td>387.219939</td>\n",
" <td>381.711610</td>\n",
" <td>381.759838</td>\n",
" <td>377.722111</td>\n",
" <td>380.351716</td>\n",
" <td>369.994757</td>\n",
" <td>...</td>\n",
" <td>382.980634</td>\n",
" <td>377.054784</td>\n",
" <td>373.449616</td>\n",
" <td>372.747890</td>\n",
" <td>379.812307</td>\n",
" <td>374.961612</td>\n",
" <td>371.970980</td>\n",
" <td>378.593563</td>\n",
" <td>374.644340</td>\n",
" <td>381.921425</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>381.631130</td>\n",
" <td>392.071871</td>\n",
" <td>386.789258</td>\n",
" <td>379.043435</td>\n",
" <td>388.119138</td>\n",
" <td>384.337388</td>\n",
" <td>382.796217</td>\n",
" <td>378.511563</td>\n",
" <td>382.213891</td>\n",
" <td>369.667710</td>\n",
" <td>...</td>\n",
" <td>377.895425</td>\n",
" <td>370.365979</td>\n",
" <td>374.697049</td>\n",
" <td>370.855179</td>\n",
" <td>376.347085</td>\n",
" <td>370.040956</td>\n",
" <td>367.751955</td>\n",
" <td>373.388293</td>\n",
" <td>377.899273</td>\n",
" <td>379.154510</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>175</th>\n",
" <td>274.620651</td>\n",
" <td>327.468959</td>\n",
" <td>338.998329</td>\n",
" <td>311.132089</td>\n",
" <td>277.171998</td>\n",
" <td>268.362211</td>\n",
" <td>296.044323</td>\n",
" <td>272.474672</td>\n",
" <td>258.583479</td>\n",
" <td>323.754294</td>\n",
" <td>...</td>\n",
" <td>308.143244</td>\n",
" <td>306.289989</td>\n",
" <td>293.509720</td>\n",
" <td>238.018586</td>\n",
" <td>241.767277</td>\n",
" <td>276.028667</td>\n",
" <td>331.820011</td>\n",
" <td>274.102543</td>\n",
" <td>318.014381</td>\n",
" <td>367.952975</td>\n",
" </tr>\n",
" <tr>\n",
" <th>176</th>\n",
" <td>273.823051</td>\n",
" <td>330.329240</td>\n",
" <td>340.157730</td>\n",
" <td>315.772843</td>\n",
" <td>276.109058</td>\n",
" <td>271.104723</td>\n",
" <td>290.589379</td>\n",
" <td>271.241683</td>\n",
" <td>259.441422</td>\n",
" <td>322.390141</td>\n",
" <td>...</td>\n",
" <td>309.378225</td>\n",
" <td>304.545964</td>\n",
" <td>300.364879</td>\n",
" <td>239.519264</td>\n",
" <td>242.484682</td>\n",
" <td>279.416244</td>\n",
" <td>330.770579</td>\n",
" <td>271.380431</td>\n",
" <td>317.868825</td>\n",
" <td>375.309240</td>\n",
" </tr>\n",
" <tr>\n",
" <th>177</th>\n",
" <td>268.611234</td>\n",
" <td>327.913665</td>\n",
" <td>340.507277</td>\n",
" <td>315.386937</td>\n",
" <td>280.087126</td>\n",
" <td>272.714697</td>\n",
" <td>286.569191</td>\n",
" <td>269.093063</td>\n",
" <td>260.158056</td>\n",
" <td>321.484201</td>\n",
" <td>...</td>\n",
" <td>311.814690</td>\n",
" <td>309.325043</td>\n",
" <td>295.015790</td>\n",
" <td>240.915226</td>\n",
" <td>241.481323</td>\n",
" <td>279.862726</td>\n",
" <td>328.342621</td>\n",
" <td>267.904477</td>\n",
" <td>316.983911</td>\n",
" <td>377.162959</td>\n",
" </tr>\n",
" <tr>\n",
" <th>178</th>\n",
" <td>267.943621</td>\n",
" <td>326.330867</td>\n",
" <td>336.213854</td>\n",
" <td>313.826748</td>\n",
" <td>278.087766</td>\n",
" <td>266.557115</td>\n",
" <td>284.299963</td>\n",
" <td>267.645930</td>\n",
" <td>258.882895</td>\n",
" <td>318.415170</td>\n",
" <td>...</td>\n",
" <td>311.421097</td>\n",
" <td>307.198771</td>\n",
" <td>294.829539</td>\n",
" <td>239.443694</td>\n",
" <td>240.116965</td>\n",
" <td>283.072914</td>\n",
" <td>327.138140</td>\n",
" <td>265.037441</td>\n",
" <td>314.558325</td>\n",
" <td>375.887249</td>\n",
" </tr>\n",
" <tr>\n",
" <th>179</th>\n",
" <td>265.070193</td>\n",
" <td>326.852844</td>\n",
" <td>335.912955</td>\n",
" <td>317.773837</td>\n",
" <td>275.479935</td>\n",
" <td>263.751964</td>\n",
" <td>286.049375</td>\n",
" <td>263.748028</td>\n",
" <td>259.920448</td>\n",
" <td>315.868492</td>\n",
" <td>...</td>\n",
" <td>309.732946</td>\n",
" <td>307.898267</td>\n",
" <td>298.888811</td>\n",
" <td>238.543232</td>\n",
" <td>244.912671</td>\n",
" <td>282.958299</td>\n",
" <td>326.508719</td>\n",
" <td>263.808481</td>\n",
" <td>314.730609</td>\n",
" <td>380.917933</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>180 rows × 2000 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3 4 5 \\\n",
"0 379.030000 379.030000 379.030000 379.030000 379.030000 379.030000 \n",
"1 379.352661 381.714966 383.375358 374.618161 379.056080 383.724965 \n",
"2 383.591870 383.667919 387.326043 378.040984 383.788079 384.552494 \n",
"3 386.108322 387.878792 384.256772 375.464701 387.219939 381.711610 \n",
"4 381.631130 392.071871 386.789258 379.043435 388.119138 384.337388 \n",
".. ... ... ... ... ... ... \n",
"175 274.620651 327.468959 338.998329 311.132089 277.171998 268.362211 \n",
"176 273.823051 330.329240 340.157730 315.772843 276.109058 271.104723 \n",
"177 268.611234 327.913665 340.507277 315.386937 280.087126 272.714697 \n",
"178 267.943621 326.330867 336.213854 313.826748 278.087766 266.557115 \n",
"179 265.070193 326.852844 335.912955 317.773837 275.479935 263.751964 \n",
"\n",
" 6 7 8 9 ... 1990 \\\n",
"0 379.030000 379.030000 379.030000 379.030000 ... 379.030000 \n",
"1 379.268473 383.107347 375.761131 376.028392 ... 378.794027 \n",
"2 380.759779 380.522154 375.154570 374.085927 ... 387.705626 \n",
"3 381.759838 377.722111 380.351716 369.994757 ... 382.980634 \n",
"4 382.796217 378.511563 382.213891 369.667710 ... 377.895425 \n",
".. ... ... ... ... ... ... \n",
"175 296.044323 272.474672 258.583479 323.754294 ... 308.143244 \n",
"176 290.589379 271.241683 259.441422 322.390141 ... 309.378225 \n",
"177 286.569191 269.093063 260.158056 321.484201 ... 311.814690 \n",
"178 284.299963 267.645930 258.882895 318.415170 ... 311.421097 \n",
"179 286.049375 263.748028 259.920448 315.868492 ... 309.732946 \n",
"\n",
" 1991 1992 1993 1994 1995 1996 \\\n",
"0 379.030000 379.030000 379.030000 379.030000 379.030000 379.030000 \n",
"1 375.038490 375.485313 375.864464 382.186543 377.960955 378.357218 \n",
"2 373.992699 376.977980 375.518888 382.730319 379.596358 375.710396 \n",
"3 377.054784 373.449616 372.747890 379.812307 374.961612 371.970980 \n",
"4 370.365979 374.697049 370.855179 376.347085 370.040956 367.751955 \n",
".. ... ... ... ... ... ... \n",
"175 306.289989 293.509720 238.018586 241.767277 276.028667 331.820011 \n",
"176 304.545964 300.364879 239.519264 242.484682 279.416244 330.770579 \n",
"177 309.325043 295.015790 240.915226 241.481323 279.862726 328.342621 \n",
"178 307.198771 294.829539 239.443694 240.116965 283.072914 327.138140 \n",
"179 307.898267 298.888811 238.543232 244.912671 282.958299 326.508719 \n",
"\n",
" 1997 1998 1999 \n",
"0 379.030000 379.030000 379.030000 \n",
"1 384.599065 377.076425 376.789847 \n",
"2 379.918507 375.128224 378.423115 \n",
"3 378.593563 374.644340 381.921425 \n",
"4 373.388293 377.899273 379.154510 \n",
".. ... ... ... \n",
"175 274.102543 318.014381 367.952975 \n",
"176 271.380431 317.868825 375.309240 \n",
"177 267.904477 316.983911 377.162959 \n",
"178 265.037441 314.558325 375.887249 \n",
"179 263.808481 314.730609 380.917933 \n",
"\n",
"[180 rows x 2000 columns]"
]
},
"execution_count": 150,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"simulate_mc(data, days, 2000, 'log')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's loop through all the stated securities and generate the visualizations and statistics that will help us understand the expected performance of a stock."
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {},
"outputs": [],
"source": [
"def monte_carlo(tickers, days_forecast, iterations, start_date = '2000-1-1', return_type = 'log', plotten=False):\n",
" api_key = os.environ.get('API_KEY')\n",
" data = import_stock_data_alphavantage(tickers, api_key)\n",
" inform = beta_sharpe(data, mark_ticker=\"SPY\", start=start_date)\n",
" simulatedDF = []\n",
" for t in range(len(tickers)):\n",
" y = simulate_mc(data.iloc[:,t], (days_forecast+1), iterations, return_type)\n",
" if plotten == True:\n",
" forplot = y.iloc[:,0:10]\n",
" forplot.plot(figsize=(15,4))\n",
" print(f\"Beta: {round(inform.iloc[t,inform.columns.get_loc('Beta')],2)}\")\n",
" print(f\"Sharpe: {round(inform.iloc[t,inform.columns.get_loc('Sharpe')],2)}\") \n",
" print(f\"CAPM Return: {round(100*inform.iloc[t,inform.columns.get_loc('CAPM')],2)}%\")\n",
" y['ticker'] = tickers[t]\n",
" cols = y.columns.tolist()\n",
" cols = cols[-1:] + cols[:-1]\n",
" y = y[cols]\n",
" simulatedDF.append(y)\n",
" simulatedDF = pd.concat(simulatedDF)\n",
" return simulatedDF"
]
},
{
"cell_type": "code",
"execution_count": 152,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Market data shape: (23, 1)\n",
"Number of non-NaN entries in market data: 23\n",
"First few rows of market data:\n",
" SPY\n",
"date \n",
"2024-02-02 494.35\n",
"2024-02-01 489.20\n",
"2024-01-31 482.88\n",
"2024-01-30 490.89\n",
"2024-01-29 491.27\n",
"printing dd\n",
" GOOG AAPL SPY\n",
"date \n",
"2024-01-02 139.56 185.64 472.65\n",
"2024-01-03 140.36 184.25 468.79\n",
"2024-01-04 138.04 181.91 467.28\n",
"2024-01-05 137.39 181.18 467.92\n",
"2024-01-08 140.53 185.56 474.60\n",
"printing mark_ret\n",
"[-0.40200844]\n",
"Error in drift_calc: 'numpy.float64' object has no attribute 'values'\n",
"Please check the input data and return type\n"
]
},
{
"ename": "TypeError",
"evalue": "unsupported operand type(s) for +: 'NoneType' and 'float'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[152], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m days_to_forecast\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m252\u001b[39m\n\u001b[1;32m 3\u001b[0m simulation_trials\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m10000\u001b[39m\n\u001b[0;32m----> 4\u001b[0m ret_sim_df \u001b[38;5;241m=\u001b[39m \u001b[43mmonte_carlo\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mGOOG\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mAAPL\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdays_forecast\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mdays_to_forecast\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msimulation_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart_date\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mplotten\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
"Cell \u001b[0;32mIn[151], line 7\u001b[0m, in \u001b[0;36mmonte_carlo\u001b[0;34m(tickers, days_forecast, iterations, start_date, return_type, plotten)\u001b[0m\n\u001b[1;32m 5\u001b[0m simulatedDF \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(tickers)):\n\u001b[0;32m----> 7\u001b[0m y \u001b[38;5;241m=\u001b[39m \u001b[43msimulate_mc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miloc\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43mt\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mdays_forecast\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m plotten \u001b[38;5;241m==\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 9\u001b[0m forplot \u001b[38;5;241m=\u001b[39m y\u001b[38;5;241m.\u001b[39miloc[:,\u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m10\u001b[39m]\n",
"Cell \u001b[0;32mIn[149], line 5\u001b[0m, in \u001b[0;36msimulate_mc\u001b[0;34m(data, days, iterations, return_type, plot)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msimulate_mc\u001b[39m(data, days, iterations, return_type\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlog\u001b[39m\u001b[38;5;124m'\u001b[39m, plot\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Generate daily returns\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m returns \u001b[38;5;241m=\u001b[39m \u001b[43mdaily_returns\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdays\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# Create empty matrix\u001b[39;00m\n\u001b[1;32m 7\u001b[0m price_list \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mzeros_like(returns)\n",
"Cell \u001b[0;32mIn[146], line 20\u001b[0m, in \u001b[0;36mdaily_returns\u001b[0;34m(data, days, iterations, return_type)\u001b[0m\n\u001b[1;32m 16\u001b[0m stv \u001b[38;5;241m=\u001b[39m simple_returns(data)\u001b[38;5;241m.\u001b[39mstd()\n\u001b[1;32m 18\u001b[0m \u001b[38;5;66;03m# Oftentimes, we find that the distribution of returns is a variation of the normal distribution where it has a fat tail\u001b[39;00m\n\u001b[1;32m 19\u001b[0m \u001b[38;5;66;03m# This distribution is called cauchy distribution\u001b[39;00m\n\u001b[0;32m---> 20\u001b[0m dr \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mexp(\u001b[43mft\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mstv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mnorm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mppf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrand\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdays\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43miterations\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dr\n",
"\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'NoneType' and 'float'"
]
}
],
"source": [
"start = \"2015-1-1\"\n",
"days_to_forecast= 252\n",
"simulation_trials= 10000\n",
"ret_sim_df = monte_carlo(['GOOG','AAPL'], days_forecast= days_to_forecast, iterations=simulation_trials, start_date=start, plotten=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|